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It is shown that the Beltrami equation has an infinite-dimensional symmetry, namely the 
Beltrami algebra, on its solution spaces. The Beltrami algebra with central extension and its 
supersymmetric version are explicitly found. 

I. INTRODUCTION 

Recently, much attention has been paid to study the 
deformation of complex structure of Riemann surfaces, 
since that subject is relevant to the problem of constructing 
operator formulations of strings I ,2 and the conformal field 
theory on higher genus Riemann surfaces,3,4 as well as 2d 
quantum gravity.5 The ones usually concentrated on are ei­
ther the Virasoro algebra and the Krichever-Novikov alge­
bra, some generators which act on the moduli space of Rie­
mann surfaces, or the semidirect summation of Virasoro 
algebra and U( 1) Kac-Moody algebra occurring in the in­
duced 2d gravity. 

It is well known, however, that the quasiconformal 
transformations characterized by the Beltrami differentials 
and the Beltrami equation deform the complex structures on 
Riemann surfaces as well. Therefore, it is of interest to see 
whether there exist some particular symmetries relevant to 
the quasiconformal transformations and whether these sym­
metries playa certain role in the deformations of the com­
plex structures on Riemann surfaces. In this paper, we con­
centrate upon the first problem. We show that there does 
exist certain infinite-dimensional symmetries in the solution 
space of the Beltrami equation, named the Beltrami algebra, 
and explore the properties of the algebra in detail for some 
simplest cases. 

In Sec. II, we prove the existence of the Beltrami algebra 
and give the explicit construction of the algebra and its cen­
tral extension form as well as the relevant Kac-Moody alge­
bra for the simplest case with the coefficient of the Beltrami 
differential being constant. In Sec. III, we give a supersym­
metry extension of the Beltrami algebra. Finally, in Sec. IV 
we give some brief discussions. 

II. BELTRAMI EQUATION AND SYMMETRY OF ITS 
SOLUTIONS 

As is well known, a smooth quasiconformal transforma­
tion on a Riemann surface is a homeomorphism of surface M 
satisfying the following condition,6,7 

(1) 

where fl is a Beltrami differential of the ( - 1,1) type. In 
terms of a local coordinate patch fl can be expressed in the 
form: 

dZ dW 
fl =fl(Z) - =fl(W)-, 

dz dw 
Ow az 

fl(Z) =fl(W) --, az aw 
and there is a positive constant K such that 

ifl(Z)i";(K - 1)/(K + 1). 

Introduce the Beltrami operator a = a - fla or 

(2) 

az =az -fl(Z)az (3) 

in terms of the Z coordinate and 

a w = aw - fl(W)aw 

in terms of the w coordinate. We see that 

Ow az=-aw· az 
Then the Beltrami equation (1) is simply rewritten as 

a/=o 
or 

Ow az/=-amf=o. az 

(4) 

(5) 

(6) 

(7) 

Now we want to find a set of symmetric operators {L} that 
map the solutions into solutions of the Beltrami equation. 

Let the field L be an operator acting on the solution 
space of the Beltrami equation. If the operator L satisfies 

[L,a] = Ra, (8) 

then the operator L is called a symmetric operator of the 
Beltrami equation (1). Clearly, the symmetric operators 
map the solutions into solutions ofEq. ( 1 ). The local expres­
sion of the relation (8) can be read in z and w coordinate 
patches, respectively, 
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[L"l:1z ] = R (z)l:1z' 

[Lw,l:1w ] =R(w)l:1w' 

where 

L z = X(z)az Ell Y(z)az Ell M(z) 

(9) 

and 

L;il =H;(z) EIlM;(z) 

=X;(z)!.... Ell Y;(z)!.... EIlM;(z) 
az az 

- a a 
- X;(w) - Ell Y;(w) - EIlM;(z(w» 

aw Ow 

= X(w)aw Ell Y(w)aw EIlM(z(w» (10) [L~\),l:1z] =RI (z)l:1z, 

[L ;2),1:1z] = R2(z)l:1z. 

are direct sums of the vector fields and scale field to be deter­
mined and X(z) and Y(z) are local coefficients of the vector 
fields in the z coordinate patch. Under coordinate transfor­
mation, R (z) is related to R (w) by the consistent condition 

Then 

L z = [L;\),L;2)] 

= [HI (z),H2(z)] EIl{L~I)M2(Z) -L;2)MI(z)} 

a ( az ) R(z) =R(w) - Yew) - - . az Ow 

=X(z)!.... Ell Y(z)!.... EIlM(z), 
(11) az az 

After some algebraic calculations, a set of equations can be 
derived from (9) and (10) as follows: 

I:1z Y(z) = - R (z), 

I:1zX(z) = - (X(z)az + Y(z)az - R(z»,u(z), 

I:1zM(z) = o. (12) 

To prove that the symmetric operators L form an infinite­
dimensional Lie algebra, we have the following theorem. 

where 

a a 
X(z) = XI (z) - (X2(z» - X2(z) - (XI (z» 

az az 

+ YI (z) !.... (X2(z» - Y2(z) !.... (Xl (z», 
az az 

Y(z) = YI(z) !....(Y2(z» - Y2(z) !....(YI(z» 
az az 

+ XI (z) !....(Y2(z» - X2(z) !.... (YI (z», 
az az 

M(z) =L~\)M2(Z) _L~2)MI(z). 

(13 ) 

(14) 

Theorem: If L (i), i = 1,2 are two symmetric operators 
then L = [L (I),L (2)] is also a symmetric operator of Bel­
trami equation. 

Since L (;) (i = 1,2) map solutions as solutions of the Bel­
trami equation, we have 

Proof Let L (i), i = 1,2, be expressed as I:1zM(z) = o. 

Therefore, 

[Lz,l:1z ] = [[HI(z),H2(z)],I:1z] Ell [M(z),l:1z ] 

= { [HI (z), [H2 (z),l:1z ]] - [H2(z), [HI (z),l:1z ]] } EIll:1zM(z) 

= [HI (z),R 2 (z)l:1z ] - [H2 (z),R I (z)l:1z ] 

= (HI (z)R 2 (z»l:1z + R 2 (z) [HI (z),l:1z ] 

- (H2 (z)R 1 (z»l:1z - R I (z) [H2 (z) ,l:1z ] 

= (HI (z)R 2 (z) - H 2 (z)R I (z»l:1z· 

That is, 

[Lz,l:1z ] =R(z)l:1z, R(z) =HI(z)R2 (z) -H2 (z)R I(z), 

and 

R(z) = HI (w) {R 2 (W) - Y2 (w) ~ ( : )} - H 2 (w) {RI (w) - YI (w) ~ ( : )} 

2544 

=HI(w)R 2 (w) -H2 (w)R I (w) +H2 (W){YI(W) ~(!)} -HI(W){Y2 (W) ~(:)} 

=R(w) +X2 (w).!..... [YI(W) !....(~)] + Y2(w).!..... [YI(W)!....( az )] 
aw az Ow Ow az Ow 
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This implies that 

R(z) = R(w) - Y(w) i. ( Oi ) 
Oi Ow 

satisfies ( 11 ), the consistent relation. The proof is now com­
pleted. 

This theorem indicates that the symmetric operators L 
do possess a Lie algebra structure. Call it Beltrami algebra. 
Now, let us consider some simple cases. 

A. The symmetry of azf=O 

Let J-l = 0, then the Beltrami equation is reduced to the 
Cauchy-Riemann equation. Equations (12) become 

azx=o, 

azY= -R, azM=O. 
(15) 

For the simplest case, we consider the Cauchy-Riemann 
equation with its domain on S2\ {O,OO}. We may take 
Lm = zm(a /az) , a subset of all symmetry operators. The 
subset forms the so-called Virasoro algebra without central 
extension. We may also get two systems of solutions of ( 15) 
such that one of them is M = Y = 0, X = zmI, and another is 
M = A. azm, X = Y = 0, where I is the unit matrix and A. a are 
the generators of some finite-dimensional Lie algebra. Then 
we find that the symmetry of solutions space of the Cauchy­
Riemann equation defined on S2\ {O, oo} is just the semidi­
rect summation of the Virasoro algebra and the Kac-Moody 
algebra without central extension, i.e., 

(16) 

[Lm'/~] =nI':n+n, 

where C~b is the structure constant of the Lie algebra 
[A. a A. b] = CabA. C if we set L = zm + la I a = A. azm , c' m z' m . 

The symmetry of global solutions of the Cauchy-Rie­
mann equation on punctured higher genus Riemann surface, 
such as K-N algebra,2 can also be constructed by means of 
this systematic method. 

B. The symmetry of Beltrami equation with l1=const 

For this case of torus" the coefficients of the symmetric 
operator L satisfy 

(az - J-laz)X = RJ-l, 

(az - J-laz ) Y = - R, 

(az - J-laz)M = O. 

(17) 

Following the previous procedure we may obtain two sub­
sets {L ~} and {L ~ } of symmetric operators that act on the 
solution space of Beltrami equation 

aJ - J-laJ = 0 withJ-l = canst. (18) 
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They have the following forms: 

L~= -(z+J-lz)n+laz, 

L ~ = - (z + J-lz)n+ IJ-l - la, (19) 

and form an infinite-dimensional subalgebra of the Beltrami 
algebra. We denote it by qj and still call it the Beltrami 
algebra.8 The algebraic relations are 

[L~,L~] = (m-n)L~+n, 
[L~,L~] =(m-n)L~+n' 

[L!,L~J = (m + 1)L~+n - (n + I)L~+n' 
(20) 

It is easy to find that this algebra contains two Virasoro alge­
bras as its subalgebras. We may consider the Beltrami as a 
semidirect summation of these two Virasoro algebras in the 
sense of [L !,L ~] #0 (n,m# - 1). 

The Beltrami algebra also has a finite-dimensional sub-
algebra as follows: 

[LI_I,Lb] = -L I
_ I , 

[ L 1_ I ,L ~] = - L 2_ I , 

[ L 1_ I ,L 2_ I ] = 0, 

[ L 2_ I ,L ~ ] = - L 2_ I , 

[Lb,L~] = -L~ +Lb, 

[ L b,L 2_ I ] = L 1_ I • 

(21) 

The generators of this subalgebra may perform the simplest 
quasiconformal transformation, i.e., locally deforming a cir­
cle into an ellipse. 

It should be mentioned here that a set of vector fields, 
which are the linear combination of L! and L ~, maps all 
nonzero solutions ofEq. (17) into zero. Such a vector field 
has the form 

(22) 

with TnF [(z + J-lz)] = 0, F analytically depending on 
(z + J-lz). Hence, the Beltrami algebra qj also contains an 
Abel subalgebra JY': 

[Tn,Tm] = O. (23) 

Because for any L ~ Eqj, T m EK, there is 

[L ~,Tm] = (m + l)Tm+ IEK' i= 1,2, (24) 

It follows that JY' is an ideal of qj. From Eq. (24) we also 
find that 

[L ~,T _ d = 0, i = 1,2. (25) 

It is easy to obtain the corresponding semidirect sum­
mation of Beltrami algebra and Kac-Moody algebra for the 
case at hand, which has a local form 

(26) 

where A. a are generators of a finite-dimensional Lie algebra 
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[,ia,Ab] =f~b,ic. 

This algebra JY reads 

[M~,M~] =f~bM"m+n 

[L~,M~] =mM~+n' i= 1,2. 

(27) 

(28) 

(29) 

Finally, we discuss the central extensions of both the Bel­
trami algebra and the semidirect summation algebra JY. 

Let i: ~ = L ~ + C~L oa, l<a<N, be the generators 
carrying a central term L 0 with 

[L oa,L °P] =0, [L "a,L:n ] =0. (30) 

Without loss of generality we may ignore the index a, then 
the central extensions of the Beltrami algebra are given by 

A A A 

[L ~,L;,,] = (m - n)L 'm+ n + Cii(m'n)L 0, i = 1,2, 

[
AIA2] A2 
Ln,Lm = (m + I)L m+ n 

- (n + 1)i::"+ n + C 12(m·n)L". (31) 

From the Jacobi identity we get the following algebraic 
equations of structure constants Cij, iJ = 1,2: 

(n - m)Cii(m - n,l) + (1- n)Cii(n + I,m) 

+ (m _/)C ii(/ + m,n) = 0, i = 1,2, 

(n + l)C 12 (m + n,/) - (n + l)C 12 (n + I,m) 

+ (m _/)C 21 (/ + m,n) - (m + l)C 22 (m + n,/) 

+ (l + l)C 22 (n + I,m) = 0, (32) 

(n + l)C 21 (m + n,l) - (n + l)C 21 (n + I,m) 

+ (m -l)C 12
(/ + m,n) - (m + l)Cll(m + n,l) 

+ (/+ l)CII(n+i,m) =0. 

After some tedious calculations we find 
A. A, A. 

[L~,L'm] =(m-n)L'm+n 

+ c(m 3 
- m)Om + n,oL 0, i = 1,2, 

AI A2 _ A2 Al (33) 
[L n,L m] - (m + I)L m + n - (n + I)L m + n 

+ c(m3 
- m)Om + n,oL ". 

Along the previous line we also get the semidirect summa­
tion algebra JY with central extension: 

III. SUPER-BELTRAMI ALGEBRA ON SUPER-RIEMANN 
SURFACES 

Letjbe a super-quasiconformal mapping/: S-S'. The 
local~oordinate (z,O) on the compact super-RieIIJ...ann sur­
face S is related to the local coordinate (w,¢J) on S' by the 
super-Beltrami equation: 9 

azw + ¢Jaz¢J) = p(azw + ¢Jaz¢J), 

- a()w + ¢Ja()¢J = v(azw + ¢Jaz¢J), 
(35) 

where p(z;Z,O) and v(z,z,O) are the complex-valued super­
Beltrami coefficients. In the case of p = 0, v = 0, Eqs. (35) 
are reduced to the super-Cauchy-Riemann equations. JO 

Using the way described in Sec. II one may discuss the 
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symmetry of solution space of the super-Beltrami equation 
and get the super version of the Beltrami algebra. For that, 
expanding w(z,O),¢J(z,O),p(z,O), and v(z,O) with respect to 
o we express Eqs. (35) in the form 

azwo + ¢laz¢1 = po(azwo + ¢Jlaz¢JI), 

azwl + ¢J°az¢JI - ¢Jlaz¢J° 

=po(azw l +¢J°az¢JI-¢Jlaz¢J°) + pI (azwo + ¢Jlaz¢JI), 

- WI + ¢JI¢J0 = VI (azwo + ¢Jlaz¢JI), 

(¢J0)2 = VI ( - azwl + ¢Jlaz¢J° - ¢J0az¢Jl) 

+ vo(azwO + ¢la¢I), 

(36) 

where w = WO + OWl, ¢J = ¢JI + ()¢J0
, p = pO + Opl, and 

v = VI + ()"p. 
Take pI = 0, P = pO = const and appropriate value VI 

and "P, we then find a set of special solutions of Eqs. (36): 

WO = LEn (z + pz)n + I, 

n 

(37) 

¢J0 = LEn (z + pz)n, 
n 

¢JI = L dr'1J(z + pz)(r+ 1)12, 
r 

where 'I] is a Grassmann constant, n,mEZ, r is taken to be the 
half-integer in Neveu-Schwartz sector and the integer in Ra­
mond sector. 

Denote 

w~ = (z+pz)n+l, 

w~ = ()'I](z + pz)(r+ 1)/2, (38) 
¢J~ = (z + pz)no, 

¢J; = 'I](z + pz)(r+ 1)12. 

We find there exist two sets of vectors {L ~}, i = 1,2 which 
map {w~,¢J~}, {w~,¢J;} onto themselves, and another two 
sets of vectors {G~}, i = 1,2 which map {w~,¢~} to {w;,¢J~} 
and vice versa. These vectors are given by 

L! = (z + pz)n + I i. + ~ (n + l)(z + pz)no ~, 
az 2 ao 

L~ = (z+pz)n+l ~+~ (n + l)(z+pz)no~, paz 2 ao 

G I = (z+lIzr+I12(~-oi.) 
r r- ao az' 

G; = (z+pz)r+ 112(~_ o~). a() paz 
We find 

[L~,L~J = (m + I)L;"+n - (n + l)L;"+n, 

[ L ~ ,G~ J = (r + n/2 + I) Gjn + r - (n + 1) G ~ + r' 

[G~,G{J = -L~+s -L~+s' iJ= 1,2. 

(39) 

(40) 

This is what we called super-Beltrami algebra which con­
tains the Neveu-Schwartz algebra and the Ramond algebra 
as subalgebras. It is easy to see that (40) is the supersymme-
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tric generalization of (20). 
The central extensions of the algebra (40) can be 

uniquely obtained, from solving the cocycle condition of the 
central extension super-Beltrami algebra: 

A. A. A. A, 

[L~,L~] = (m + l)Um +n - (n + l)L:"+ n 

A. A. + (c/8)(m
3

-:m)6m + n•o, A. (41) 

[L~,Gl,] = (r+nI2+ l)Gl(n+r) - (n+ l)G~+" 

A,A. A, A. C r 
[G~,G{] = -L~+s _Ll,+s -2" ( -!)6,+s.o' 

where c is a constant. 

IV. DISCUSSIONS 

We have proved that the Beltrami equation has the infi­
nite-dimensional symmetry on its solution space for Rie­
mann surfaces and, in particular, have explicitly constructed 
the Beltrami algebra for the case of fl = const, its central 
extension form, its semidirect summation with Kac-Moody 
algebra, as well as its supersymmetric versions. We see that 
the special homeomorphic solutions in the solution space of 
Beltrami equation describe quasiconformal transformations 
of Riemann surfaces. Therefore, on the one hand, the infi­
nite-dimensional symmetry on the solution space implies 
that there may also exist various infinite-dimensional sym­
metries to characterize the generic quasiconformal transfor­
mations as well as their supersymmetric versions. On the 
other hand, it would be of interest to find out such symme­
tries relevant to quasiconformal transformations and to see 
their relations ~ith,~qe deformation of complex structures of 
Riemann surfaces. From that it may be possible to deeply 
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discuss the symmetry of moduli space and the physical appli­
cations of the symmetries. In fact, from the result c = 28 in 
our BRST formalism of the Beltrami algebra, II we find the 
quasiconformal symmetry actually plays an important role 
in the quantum theory of2d gravity. The subjects related to 
them will be explained elsewhere. 12 
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Contractions of Lie algebras and of their representations are generalized to define new 
quantum groups. An explicit and complete exposition is made for the one-dimensional 
Heisenberg H( l)q and the two-dimensional Euclidean quantum group E(2) obtained by 
contracting SU(2)q' q 

I. INTRODUCTION 

In recent years the concept of a quantum group has ex­
tensively entered mathematical and physical literature. In 
theoretical physics, quantum groups have received huge in­
terest due to their connection with the quantum Yang-Bax­
ter equation I that plays a deep role in many problems of 
current research, as, for instance, exactly soluble problems 
of statistical mechanics,2 integrable quantum field theo­
ries, 3 and factorized S matrices.4 The mathematical nature 
of quantum groups has been progressively clarified and put 
in connection with the largely developed theory of Hopf al­
gebras5 and universal enveloping algebras of Lie algebras:6 

Indeed quantum groups can be regarded as deformations of 
the latter structures with suitable "classical limit" condi­
tions. As a consequence, many results concerning the struc­
ture and the representations of Lie groups have been ex­
tended to the quantum case as well and the q deformation 
Uq (g) of the universal enveloping algebra has been defined 
for any simple Lie algebra g. 

Probably the most studied case of the quantum group is 
obviously Uq (su(2» = SU(2)q,-see, e.g., Refs. 5 and 7-, 
whose generators in the Chevalley basis are indicated by the 
usual notation {J3 ,J + } and for which the commutation re­
lation of the su(2) Lie algebra are deformed into 

[ J3 ,J ± J = ± J ± ' 

J,J = 2J == sh(zJ3 ) 
[+ - J [ dq sh(z/2)' z=logq. (1.1) 

This group has also been discussed using a generaliza­
tion of Schwinger's method to the theory of angular momen­
tum, thus introducing different q-deformed analogs of the 
raising and lowering operators of the harmonic oscillator. 8.9 

On the other hand, this approach has been considered only 
from a technical point of view: an independent significance 
as a quantum group obtained by q deforming the (nonsemi­
simple) Heisenberg algebra h ( 1 ) generated by the three ele­
ments {A,A + ,H} with H central and [A,A +] = n, has not 
been looked for. Since we think that nonsemisimple quan­
tum groups deserve an appropriate consideration in them­
selves, we shall present another treatment of the problem, 
which, on the one side can be generalized to a large class of 

algebras, while un the other provides a mathematically 
handy formalism. Thus, instead of pursuing the Schwinger'S 
approach to the <mgular rr.omentum, we prefer to look for a 
generalization of the contraction technique. In order to be as 
concrete as possible, we shall consider the simplest cases, 
namely the three-dimensional ones. 

The purpose of this paper is indeed to discuss the q de­
formation of other possible three-dimensional Lie algebras 
that exist besides su (2): one of them is the just mentioned 
h(1), while the other is the Lie algebra e(2) of the rigid 
motions of the plane R2. The discussion we are going to pres­
ent is based on the widely known method of contractions of 
Lie algebras ID and on its generalization for construction of 
the corresponding representations. I I The central idea is 
that, since the two nonsemisimple algebras h( 1) and e(2) 
are obtained by suitable contractions of su(2), quantum 
groups H(l)q and E(2)q can be coherently defined by an 
extension of the contraction procedure, which must also be 
effective on the parameter q determining the quantum defor­
mation. We thus have to deal with a commutative diagram: 

SQG CQG 

q-> 1, 

SG CG 

where SQG and CQG, SG and CG, respectively, mean sim­
ple and contracted quantum group, simple and contracted 
group. 

II. THE HEISENBERG QUANTUM GROUP AND ITS 
REPRESENTATIONS 

According to the scheme previously proposed, we de­
fine the following transformation on the generators and on 
the parameter z = log q whose vanishing limit reproduces 
the classical su(2): 

'(A,A +,H,w) = diag{£I/2,£1I2,2£,£- I}'(J +,J _ ,J
3
,z). 

(2.1 ) 

Taking the limit £->0 we get 
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[H,A] = 0, [H,A +] = 0, [A,A +] = sh(wH 12) . 
w/2 

(2.2) 

We remark that the scaling w = E - IZ is determined by 
the requirement that the contraction procedure makes sense 
and does not directly give the Lie algebra h ( 1 ). Indeed, by 
the above choice, the hyperbolic sine structure is preserved 
for the commutator of A and A +: obviously h ( 1) is again 
recovered in the limit w ..... O. We now show that the relations 
(2.2) are actually consistent. 

Proposition A: Equations (2.2) define a quantum group 
that will be called the Heisenberg quantum group H ( 1 ) q' 

Proof: We use the contraction procedure to determine 
coproduct, counit, and antipode for (2.2) and we show that 
the Hopf algebra requirements are satisfied. 12 From the de­
finition of z, from the coproduct of SU (2) q (Ref. 5): 

AJ = - zJ,12 J + J zJ,/2 
L.l. + e ® + + ®e 

and using the transformation (2.1) we find 

aA = e - wH /4 ® A + A ® ewH /4, 

aA + = e - wH /4 ® A + + A + ® ewH /4. 

For H we have obviously 

aH= 1 ®H +H® I, 

and a straightforward calculation shows that 

[aA,aA +] = shew aH 12) . 
w12 

For the counit the situation is even simpler, since 

E(A) = E(E1I2J + ) = 0 

and similarly 

E(A + ) = E(H) = o. 
Now, it is immediate to verify that 

(E®id)aA = (id®E)aA =A. 

Moreover, 

= e - wH /4 ® e - !VH /4 ® A + e - !VII /4 ® A ® ewll /4 

and from the analogous computation we find that 

(id ® a)aA = (a ® id)aA. 

(2.3 ) 

(2.4 ) 

Finally, for the antipode y, we see that y(J) ) = - J) 
implies y(H) = - H while 

_ ewH / 4Ae- wll/4 = _ A, 

and analogously y(A +) = - A +. Denoting by m the prod­
uct in the enveloping algebra a final calculation shows that 

m(id®y)aA = m(y®id)aA = E(A)I, (2.5) 

each of the three terms being zero. As the relations (2.3)-
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(2.5) also hold for the generators A + and H, the proof is 
complete. 

Let us now extend to the 1 epresentations of SU (2) q the 
contraction procedure. We have:8 

J ± ~,m) = (U ± m]q U ± m + l]q)I/2~,m ± I), 
(2.6) 

J) ~,m) = m~,m), 

where, as usual, [a]q = sh(zaI2)/sh(zI2). Performing the 
change of variables 

o 
-1 

o 
Eqs. (2.6), with s = exp{Ew}, can be written in the form 

J _ IE - Ip,n) 

= ([n].[t:-Ip - n + lL) I12 IE- lp,n - I), 

J + IE - Ip,n) 

= ([n + I]. [E - Ip - n lY12 IE - Ip,n + 1), 

J3 IE- 1p,n) = (E- IpI2 - n)IE-1,n). 

Observing that, for E ..... 0, 

[n]. = sh(Ewn/2) 
sh(Ew12) 

while 

[ 
_ I ] sh(w(p - En)/2) 

E p-ns= ..... E 
-I sh(wp12) 

sh(Ew/2) wl2 

and following step by step the procedure of Ref. II, we final­
ly find 

A Ip,n) = (n sh(wpI2) )1I2 1p,n - 1), 
w/2 . 

A +Ip,n) = (n + 1) sh(wp12) )1I2 Ip,n + 1), (2.7) 
wl2 

Hlp,n) =plp,n). 

In the same spirit we find that the Casimir reads 

C = (4/w2)sh2(wH 12). 

The limit z ..... 0 of (2.6) reproduces obviously the representa­
tions of su(2) as well as the limit w ..... o of (2.7) gives the 
corresponding representations of h ( 1 ). 

III. THE EUCLIDEAN QUANTUM GROUP 

The same method developed in Sec. II will be now used 
to define a quantum deformation E(2)q of the Euclidean 
group of the plane. We find it more convenient to perform a 
change of basis and substitute the generators {J + ,J _ ,J3 } 

by {J I ,J2 ,J) }, where 

J I = !(J + + J _), J2 = - (i/2)(J + - J _ ). 

It is then straightforward to see that, in this basis, Eqs. (1.1) 
take the form 

[J J - I' sh(zJ3 ) 

1> 2] - 2sh(z/2) ' [J2,J3 ] =iJI , [ J3 ,JI ] = iJ2 • 

(3.1 ) 

As in the case of the Heisenberg group, here again we 
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have one possible contraction that completely eliminates the 
quantum structure. Indeed, if the generators Jk are scaled 
according to 

J;-+£-IJ;, i= 1,2, J3 -+J3 , 

then the contracted relations are simply 

[JI>J2 ] = 0, [J2 ,Jd = iJI, [J3 ,J1 ] = il2 , 

namely those of the Lie algebra e( 2). Let us, instead, consid­
er the scaling 

'(Py,J,Px,w) = diag{£,I,E,£-I}'(JI ,J2 ,J3 ,Z). 

Taking now the limit E -+ 0, a nontrivial quantum behavior is 
maintained and the contracted relations read 

[Px,Py] = 0, [J,Px ] = iPy, 

[J,Py] = - (i/w)sh(wPx )' (3.2) 

We are again in position to prove the analog of Propos i­
tion A. 

Proposition B: Equations (3.2) define a quantum group 
that will be called the Euclidean quantum group in dimen­
sion two E(2)q' 

Proof" Since again we have to show that the Hopf alge­
bra properties are satisfied, we simply give the form of copro­
duct, counit, and antipode and omit the straightforward cal­
culations. These are 

for the coproduct; 

E(J) = E(Px ) = E(Py ) = 0, 

for the counit; 

y(J) = - J + (i/2)wPy, 

y(Px ) = - Px' y(Py ) = - Py, 

for the antipode. 
It is interesting to determine the Casimir ofE(2)q' We 

recall that the quantum group SU(2)q has two different ex­
pressions for the Casimir according to the fact that the repre­
sentation has integer or half-oddj (Ref. 8), that are, respec­
tively, 

J _ J + + [Jdq [J3 + l]q 

and 

J_J+ + ([J3 +!]q)2. 

It is easy to be seen that the contraction of both of them gives 
the same result and we shall explicitly work out the integer j 
case. We have 

J_J+ + [Jdq[J3 + l]q 

2 2 sh(zJ3 ) 

=J I +J2 - 2sh(z/2) 

sh(zJ3 /2)sh(z(J3 + 1)/2) 
+---'--------

sh2(z/2) 

2 2 2 sh(wPx ) 
=£- P +J -----

y 2 sh(Ew/2) 
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sh(wPx/2)sh(w(Px + £)/2) 
+ . 

sh2(£w/2) 

Renormalizing and taking the limit E -+ ° we get the Casimir 
operator for E(2)q' 

C = P; + (4/w2 )sh2(wPx/2), 

whose limit for vanishing w reproduces the classical 
P~ +P;. 

Again following Ref. 11, we can obtain the representa­
tions ofE(2)q, that, in the momentum basis, are very similar 
to the usual ones because here also we diagonalize Px and Py • 

Of course the Casimir is conserved, which implies that we 
are not performing a rotation on a circle but on a less sym­
metrical curve of equation C = const. This is reflected in the 
expression for J that reads 

J=iPy~-~sh(wPx) ~. apx w ap
y 

IV. CONCLUSIONS 

We want to conclude this paper by making some obser­
vations both on the procedure and on the meaning of the 
concepts that have been introduced. 

From a technical point of view we want again to stress 
the fact that, as in the standard case, there is not a unique 
way to perform a contraction. In the case of quantum 
groups, the q parameter must be included in the scaling of 
the variables and care has to be taken in order not to fall 
directly into the classical situation. In the envisaged exam­
ples, the scaling of the q parameter was, in fact, determined 
by this requirement. We do not expect this is still holding in 
more complicated situations. 

More general considerations are suggested by the E( 2) q 

case. Indeed we see that situations with apparently lower 
symmetry, as is the case of the curve C = const, can be treat­
ed by concepts and tools analogous to completely symmetri­
cal cases. In our knowledge this is an almost unique tech­
nique where it is possible to dismiss with continuity part of 
the symmetry while keeping all the other features un­
changed. In this perspective we are working to investigate 
the quantum group E( 3, 1) q which, in our opinion, is the 
right instrument to describe the (classical!) first corrections 
to the flat metric due to the presence of a gravitational field. 
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Classification of all star irreps of gl{mln) 
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All the finite-dimensional star irreps of gl ( min) are classified in terms of their highest weights, 
thereby completing the classification of all finite-dimensional star irreps of the basic classical 
Lie superalgebras. The lowest weights of such irreps are determined explicitly and it is shown 
that the contravariant and covariant tensor irreps of gl (m In) are star irreps of type (1) and 
(2), respectively. This explains the applicability of the Young diagram method to these two 
classes of representations. However, it is shown that one-parameter families of typical star 
irreps occur that are intrinsically different from the tensorial irreps. 

I. INTRODUCTION 

In the first two papers of this series, we classified the star 
and grade starirrepsofgl(mll) (Ref. 1) and C(n) (Ref. 2). 
In this paper, we complete the classification of all finite­
dimensional star irreps for the type I basic classical Lie su­
peralgebras by obtaining the star irreps of gl (m In). In view 
of the fact that type II basic classical Lie superalgebras3 do 
not admit star irreps,4,s this completes the classification of 
the star irreps of all the basic classical Lie superalgebras. 

Star and grade star irreps are the natural generalizations 
of Hermitian representations of ordinary Lie algebras to the 
case of Lie super algebras. They were first introduced by 
Scheunert et 01.,4 who demonstrated that all simple basic 
classical Lie superalgebras admit at most two types of star 
and grade star irreps. The corresponding modules of such 
irreps possess a positive definite metric, thus are most likely 
to have physical applications, where unitarity is a basic re­
quirement. 

Quite apart from their possible physical applications, 
these irreps are mathematically interesting as well, especial­
ly the star ones. As pointed out in Ref. 4, the tensor product 
of two star irreps belonging to one type reduces completely 
into star irreps of the same type, and a star irrep branches 
only into star irreps of a given (canonical) subsuperalgebra. 
These properties, certainly not shared by other irreps in gen­
eral, make the star irreps behave very much like irreducible 
representations of ordinary Lie algebras. Thus it is plausible 
that the classical techniques used in studying the representa­
tion theory of Lie algebras will be applicable to this class of 
irreps as well. For example, the Young diagram technique6 

proves to be a very powerful tool in dealing with the so-called 
contravariant and covariant tensor irreps.6-9 Its applicabili­
ty for the type I basic classical Lie superalgebras is actually 
based on the fact that the contravariant and covariant tensor 
irreps are star irreps of the two different types. 

Although some star and grade star irreps of certain su­
peralgebras were studied individually in the past,S,1O a sys­
tematic classification of such irreps is still lacking. There­
fore, our aim in this series of papers is to carry out the 
classification of all the finite dimensional star and grade star 
irreps of the basic classical Lie superalgebras. The present 
article, together with the previous papers,I,2 accomplishes 
the classification of the star irreps. In the next paper, the 

grade star irreps will be completely classified. 
The main results of this paper are summarized in Theo­

rems 1-4, which specify the necessary and sufficient condi­
tions on the highest weight of a given finite-dimensional irre­
ducible gl(m In) module in order for it to be star. The lowest 
weights of the atypical star irreps are determined in Proposi­
tions 5 and 6, and in Proposition 7 we show that the contra­
variant and covariant tensor irreps discussed in Refs. 6-9 are 
star irreps of type ( 1) and type (2), respectively, explaining 
why the Young diagram method and the related method 
using Schur functions are so successful in dealing with these 
irreps. However, it is demonstrated that there exists an addi­
tionallarge class of typical star irreps. 

The structure of the paper is as follows. Section II briefly 
specifies our notation and conventions. Sections III and IV 
provide a complete classification of the typical and atypical 
star irreps, respectively. In Sec. V we demonstrate that the 
contravariant and covariant tensor irreps are star irreps, and 
finally, in Sec. VI we conclude the paper with a summary of 
the main results and some remarks on further research. 

II. NOTATIONS AND CONVENTIONS 

We will use the same notations as in Refs. 1 and 2, but 
for convenience we briefly explain them here. 

The gl(mln) generators E: satisfy the graded commu­
tation relations 

[E:,E~] =O~Ed - (_I)[(a>+(b)]{(c>+(d)[odE~, 

(1) 

where 0 (and b, c, etc.) collectively represent even indices i 
and odd indices Jl with 1 <i<m, 1 <Jl<n. The parity factor 
(0) is defined by 

{
O, 0 = i, 

(0) = 1, a =Jl, 

and we say a generator E: is even if (0) + (b) ==O(mod 2) 
and odd if (0) + (b) == l(mod 2). It should be pointed out 
that the bracket on the Ihs of ( 1) refers to the normal com­
mutator except in the case when both generators E: and E ~ 
are odd, in which case it refers to the anticommutator. 

As a basis for the Cartan subalgebra of gl (m In) we 
choose E;, l<i<m, and E~, I<Jl<n, whose eigenvalues 
serve to label the weights of the representations, and we de-
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note an arbitrary gl(mln) weight A by 

A = (A I ,A2 , .. ·,Am IWI 'W2 , ••• ,wn) 
m n 

= I A;E; + I WI-A.· 
;= I 1'= I 

With this convention, the sets of even and odd positive roots 
are given by 

<1>0+ = {E; - Ejll<i<j<m}U{81' - 8v ll<Jt <v<n}, 

<l>t = {E; - 81' 11 <i<m, 1 <Jt<n}. 

The weights Ej and 81' form a basis for the weight space, 
which inherits a nondegenerate bilinear form from the struc­
ture of gl(mln) such that 

(E;,Ej ) =8ij,(81',8v ) = -8I'v,(E;o81') =0. 

We denote the half-sums of the even and odd positive 
roots by Po andpI' respectively, and setp = Po - PI' Thep's 
can be worked out easily from <1>0+ and <l>t and explicit 
results are given in Ref. 1. For a given subset () of <1>1+ , we 
also define 

PI «(}) = ~ I a, (}~<I>I+' 
2 ae(J 

(2) 

Every finite-dimensional irreducible highest weight 
gl(mln) module VeAl admits a natural Z gradation 

d 

VeAl = al Vk (A), 
k=O 

where Vk (A), O<k<d, constitute modules of the even subal­
gebra ofgl(mln), i.e., gl(m) algl(n). We refer to Vd(A), 
assumed nonzero, as the minimal Z-graded component of 
VeAl and we say that VeAl has d + 1 levels. 

The above gradation induces the following partitioning 
of the weights in VeAl 

d 

Il(A) = U Ilk(A), 
k=O 

where Ilk (A) is the set of distinct weights in the subspace 
Vk (A), which is stable under the Weyl group of 
gl (m) al gl( n) [also referred to as the Weyl group of 
gl(mln) ]. 

Let us denote the set of real dominant weights of 
gl(mln) by D + . Following Ref. 1, on each irreducible high­
est weightgl(mln) module VeAl with AElJ + , there exists a 
well defined nondegenerate sesquilinear form (I), which has 
among others, the property that for all v and W belonging to 
VeAl 
(E~vlw) = ( - )[1/(V) + (E+1/)(a) + e(b»)'[(a) + (b»)(vIE:w), 

where (v) = kifllEVk (A). Here, 1] and Eare grading param­
eters that may take values 0 and 1, leading to four inequiva­
lent forms. I 

Following Scheunert et al.4 gl(mln) admits two types 
of star and two types of grade star modules. We say that 
V( A) is an irreducible star module of type (1) [resp. (2)] if 
the sesquilinear form (I) with 1] = 0 and E = 0 (resp. E = 1) 
is positive definite equipping VeAl with an inner product, 
and the corresponding irrep is called type (1) [resp. (2)] 
star. Similarly, VeAl is called a grade star module of type 
(1) [resp. (2)] if the form (I) with 1] = 1 and E = 0 (resp. 
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E = 1) is positive definite. In Ref. 1 we proved that there is a 
one-to-one correspondence between the two types of star ir­
reps via duality. More precisely, we have the following prop­
osition. 

Proposition 1: The dual of a type (1) star irrep is a type 
(2) star irrep and vice versa. • 

This proposition will be extensively applied later in the 
paper when we classify type (2) star irreps. For the two 
types of grade star irreps, this one-to-one correspondence 
breaks down; actually we have the following. 

Proposition 2: The dual of a type (1) grade star module 
with an even number oflevels is a type (2) grade star module 
and vice versa, while the dual of a grade star module with an 
odd number of levels is grade star of the same type. • 

In the remainder of the paper, we will always use VeAl 
to denote a finite-dimensional irreducible gl( min) module 
with a real highest weight AElJ + . It is also assumed that its 
maximal Z-graded component Vo (A) is a Hermitian 
gl (m) al gl( n) module, orin other words, we choose a com­
pact real form for the even subalgebra. The highest weight 
vector of VeAl will be denoted by VA. 

III. TYPICAL STAR MODULES OF gl(mln) 

In this section we study the typical star irreps of 
gl (m In). The main results are Theorems 1 and 2 that classify 
the typical type (1) and type (2) star irreps, respectively, 
according to their highest weights. 

Let us start with the typical type ( 1 ) star irreps. Follow­
ing the strategy of Refs. 1 and 2, we define the gl( m) al gl (n ) 
invariant: 

n m 

r= I I EfE~. 
1'= I ;= I 

It is straightforward to prove I that on each irreducible 
gl(m) al glen) module V(O)(Jt) ~ VeAl, r takes the eigen­
value 

r= !(A -Jt,A +Jt + 2p). 

If II + (A) denotes the set of gl (m) al gl (n) highest weights 
appearing in Il(A), we have the following. 

Proposition 3: V( A) is an irreducible type ( 1) star mod­
ule iff 

(A - Jt,A + Jt + 2p»0, VJtEIl + (A). (3) 

Proof: The proof goes in exactly the same way as in the 
case of gl(m 11) I and C(n f. Set 1] = E = O. Given any v be­
longing to a definite gl( m) al gl( n) irreducible module 
V(O)(Jt) ~ VeAl, 

(4) 
It,i 

If VeAl is type (1) star, (vlv) >0, VV=f.O and 
(E~vIE~v) >0, Vi,Jt, thus, r>O, and this proves the necessi­
ty of (3). 

To show its sufficiency, we use induction on the differ­
entZ-graded levels. Now (I) is positive definite on Vo (A) by 
definition. Assume that it is also positive definite on 
VK _ I (A), k>l; then for any O=f.lIEVdA) Eq. (4) holds 
provided that v belongs to a (possible multiple of a) definite 
irreducible gl (m) al gl (n) module. Since E ~ lIE Vk _ I (A), 
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following the induction hypothesis, we conclude that all the 
terms on the rhs of ( 4 ) are non-negative. In fact, they cannot 
vanish simultaneously, otherwise we would have 

E~v = 0, Vi,J.t, 

contradicting the assumption VE Vk (A), k> 1. Therefore, the 
rhs of (4) is positive and hence r> 0, from which we obtain 
(vlv) > 0 which completes the first part of the argument. As 
to the general case, observe that every nonzero veVk (A) is 
expressible as a sum 

where each Va belongs to a (possible multiple of a) irreduci­
ble gl(m) $ glen) submodule. Hence, we obtain, in view of 
the first step, 

(vlv) = L (va IVa) > 0, 
a 

where we have used the fact that gl (m) $ gl (n) submodules 
with different highest weights are orthogonal under the in­
duced form. 1

•
2 This proves (vi v) > 0, for all nonzero 

veVk (A), from which the result follows by induction. • 
Now our task is to reformulate the above proposition for 

typical type ( 1) star irreps such that no reference is made to 
individual gl (m) $ gl (n) submodules. Before doing this, we 
prove the following technical result. 

Lemma 1: Suppose AeD + satisfies 
(A + P,€m - 8n ) >0. Then 

(i) (A + p,(3) >0, V{3e<l>l+ , 

(iO (v,{3) >0, V veIl (A),{3e<l>t . 

Proof: (i) For {3 = €; - 81'e<l>t , we have 

(A + p,(3) = (A + P,€m - 8n) + (A + P,€; - €m) 

+ (A + p,8n - 81' ) 

>(A + P,€m - 8n), 

where we have used the fact that A + peD + . This proves 
(i). 

(ii) As to the second statement, we first consider a 
weight veIl + (A) which is a gl(m) $ glen) highest weight 
in V( A). Such a v can always be written in the form 

v = A - 2pl (0), O~<I>I+ 

withpl (0) as in Eq. (2). Now observe that 

..;; L (€m - 81',€m - 8n) 
E'rn- 6"e8 

..;;n -1. 

Thus 

(v'€m -8n»(A,€m -8n) + I-n 

= (A + P,€m - 8n »0. 

Now every weight J.tell (A) can be written as 
m-l n-l 

J.t=v- L p;(€;-€;+l)- L ql'(81'-81'+1)' 
;= 1 1'= 1 
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withp;, ql'el + and veIl + (A), therefore 

(p',€m -8n) = (v'€m -8n) +Pm-l +qn_I>O. 

Using the fact that every {3e<l>t is conjugate under the Weyl 
group to the odd root €m - 8n, i.e., {3 = u(€m - 8n), uew, 
we arrive at 

(J.t,{3) = (u-1(J.t)'€m - 8n »0, VJ.teIl(A), {3e<l>t. 

It is worth mentioning that if (A + P,€m - 8n) > 0, then 
equalities will not occur above. • 

Equipped with Proposition 3 and the preceeding 
lemma, we are now ready to prove one of the main results of 
this section. 

Theorem 1: Let AeD + . The irreducible highest weight 
gl (m In) module V( A) is typical and type (1) -star iff A is 
real and 

(5) 

Proof: Let us first show the necessity of (5). Consider 
the two vectors u and v defined by 

v=E"u u=E n
- 1En-2"'E 1 vA 

m , m m m 

: here we have adopted the convention that indices with an 
overbar are odd. If V( A) is typical and type (1) -star, we 
necessarily have 

(ulu) > 0, (vlv) > O. 

Note that 

(vlv) = (A + P,€m - 8n) (ulu). 

Thus 

(A + P'€m - 8n) > O. 

To show the sufficiency of (5), it suffices to prove 

(A-v,A+v+2p»0, V veIl + (A) 

because of Proposition 3. We will carry out the proof in two 
steps. Recall first that every veIl + (A) can be expressed as 

v = A - 2Pl (0), O~<I>t 

so it suffices to demonstrate that 

(2Pl (0),2(A +p) - 2pI (0»>0. (3') 

Step (a): Assume first that 0 is of the special form 

0= {€; - 81'1'€; - 81'2""'€; - 81')' l..;;k";;n, (6) 

where i is a fixed even index and the odd indices are all differ­
ent, which we can assume to have the ordering 
J.tl <J.t2 < ... <J.tk without losing generality. Now 

(A - v,A + v + 2p) 

= (2Pl (0),2(A + p» - (2Pl (0),2pl (0» . 

We consider the two terms seperately. For the first term, we 
have 

2(A + P,2Pl (0» 
k 

= 2 L (A + P,€; - 81'a) 
a=l 

k 

= 2k(A + P,€; - 81") + 2 L (A + p,81'. - 81') 
a=1 

k 

>2k(A + P,€; - 81") + 2 L (p,81" - 81')' 
a=l 
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The definition of (), i.e., (6), guarantees that there exist at 
least k - a + 1 distinct odd indices P such that Pa <P<'Pk' 
thus 

k k 

2 L. (p'~/L' - ~1'»2 L. (k - a) = k(k - 1). 
a= I a= I 

Therefore, 2(A + P,2p1 (O»;;>k(k - 1), where the first 
statement of Lemma 1 is used. 

As to the second term, we have 
k 

(2pdO),2p.«()) = L. (1 - ~l'a.l'tl) 
a./3= I 

k 

a.~ I (1 - ~a./3) = k(k - 1). 

Therefore, we conclude that 

(2p1 «(),2 (A + p) - 2p1 «());;>O, 

when () is of the special form (6). 

Step (b): Now we consider an arbitrary O~cI>t. It is 
crucial to observe that every such 0 can be partitioned into 

m 

0= U OJ, 
j=1 

with OJ C<I>t being a set ofthe special form of (6), i.e., 

()j = {Ej -~" ,Ej -~" , ... ,Ej - ~".}, 1 <'PI a <.n. r,,1 ,-,.2 rl,k; • 

We assume that O<.kj <.m and interpret k j = 0 as OJ being 
empty. Now utilizing the results of Step (a), we obtain 

h m 

2(A + p,2pl (0»> L. kiCk; - 1) (7) 
;=1 

and 
h m 

(2p1 (0),2p1 (0» = L. k; (k; - 1) 
j=1 

+ L (2pl (0;),2p1 (OJ)), 
j#-j 

Since for i =F j, 
k, kj 

(2pi «(); ),2pl (OJ)) = L L (E; - ~1'1.u,Ej - ~I'j.tl) 
a=I/3=1 

we have 
m 

(2p1 ((),2pl (0»<. L kj(kj - 1). (8) 
j=1 

Combining (7) and (8) together leads to the inequality (3'), 
thus proving the theorem. • 

There is a minor point worth mentioning: 
(A + p,Em - ~n) > 0 guarantees that A is typical. 

Now we tum to the classification of typical star irreps of 
type (2). Following Proposition 1, VeAl is a typical type 
(2) star module if and only if 

( - A - + p,Em - ~n) > 0, 

where A - is the lowest weight of VeAl. Fora typical highest 
weight A defined by 

A = (AI ,A2, .. ·,Am IlU l ,lU2'''''lUn) 
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the corresponding lowest weight can be easily determined to 
be 

A - = (Am,Am _ I , .. ·,AI IlUn,lUn _ I , ... ,lUl ) - 2p .. 

thus 

and 

(A- -p,Em -~n) = (A+p,EI -~I)' 

Therefore, we arrive at the following theorem. 
Theorem 2: For AED + ' VeAl is a typical type (2)-star 

gl(mln) module iff A is real and 

(A+p,EI -~I)<O. (9) 

• 
Theorems I and 2 classify the typical star modules of 

gl(m In) completely. Now we tum to the classification of the 
atypical modules. 

IV. ATYPICAL STAR IRREPS OF gl(mln) 

Having classified the typical star irreps of gl (m In) we 
now tum our attention to the atypical star irreps. We will 
prove two theorems [ (3) and (4) ], which specify the neces­
sary and sufficient conditions on the highest weight of a fi­
nite-dimensional irreducible gl (m In) module V( A) in order 
for it to be star. 

A. Atypical type (1) star irreps of gl(mln) 

For atypical type (1) star irreps, we have the following 
result. 

Proposition 4: Let AED + be atypical. If VeAl is a type 
(1) star gl(mln) module, there exists an odd index 1 <.p<n 
such that 

(A + p,Em - ~I') = 0, (A,~I' - ~n) = O. (10) 

Proof If V(A) is type (1)-star, then [notation as in 
Theorem (1) ] 

O"(E~v"IE~v") = (A + p,Em - ~I ) (v"lv"), 

i.e., (A + p,Em - ~I ) >0. If equality occurs, then E ~ v" = 0 
and we take P = 1, otherwise we consider 

O"(E~E~v"IE~E~v") 

= (A + p,Em - ~2 )(E~v"IE~v"). 
We must again have either (A + p,Em - ~2) = 0 and 
E ~ E ~ v" = 0 or else (A + p,E m - ~2 ) > O. In the former 
case, we take P = 2; in the latter case we will continue the 
process until we find a vector u such that 

u = E I' V V = E I' - lEI" - 2 ••• E i v" m , m m m 

with(ulu) = 0 but (vlv) > O. Now 

(ulu) = (A +p,Em -~I')(vlv) 

thus 

(lOa) 

Such a vector u must exist, otherwise we would have 
(A + p,Em -13n ) >0, and this makes A typical, contradict­
ing the given conditions. 

Assume we have found such an index P which renders 
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the first condition of (10), i.e., (lOa) satisfied; then we con­
sider the vector 

u'=E'/nv. 

From (u'lu') = [(A,€m - Dn) - (J.-l- 1)] (vlv);;;>O we de­
duce that 

(A,€m - Dn );;;>J.-l- 1. 

On the other hand, the lexicality of A requires 

O;;;.(A,D
Il 

- Dn) = (A,€m - Dn) - (A,€m - D
Il

) 

= (A,€m -Dn) - (J.-l-l);;;>O, (10b) 

thus 

(A,DIl - Dn) = ° 
as we wished to prove. • 

Proposition 4 provides us with the necessary condition, 
i.e., (10), for a gl(mln) module V(A) to be type (1)-star 
and atypical. It turns out that (10) is also sufficient. To 
prove this we need the following technical results. 

Lemma 2: Given two type ( 1) [resp. (2) ] star irreduci­
ble gl(mln) modules V(A) and V(A'), the irreducible 
gl (m 1 n) module V( A") is contained in the tensor product 
V(A) ® V(A') if the maximal l-graded component of 
V(A"), i.e., Va (A") which is an irreducible gl(m) E9 gl(n) 
module, is contained in Va (A) ® Va (A'), and in this case 
V(A") is also type (1) [resp. (2)] star. 

Proof: The lemma follows trivially from the fact4 that 
the tensor product of two type (1) [resp. (2)] star irreps 
reduces completely into type (1) [resp. (2)] star irreps .• 

Lemma 3: Let Va (A) and Va (A') be finite-dimensional 
irreducible gl (m) <9 gl( n) modules and suppose VEna (A) is 
W conjugate to A. Then the irreducible gl(m) <9 glen) mod­
ule Va (A' + v) occurs (with unit multiplicity) in 
Va (A) ® Va (A') if and only if v + A'ED + . 

Proof: This result is proved for arbitrary semisimple Lie 
algebras in Ref. 11. • 

By considering the (m + n) X (m + n) matrices of the 
vector irrep of gl(mln), which has a highest weight 
Aa = (1,0, ... ,010, ... ,0), one can easily see that the vector 
module V( Aa ) is type ( 1) -star. However, by repeated appli­
cation of Lemmas 2 and 3, we note that the irreducible 
gl(mln) module V(AI ) with 

Al = (A I ,A2, .. ·,Am_ I ,010,0, ... ,0), A;El+, ..1,;<..1,;_1> 

appears in the tensor product 

V(Aa) ® V(Ao) ® ... ® V(Aa) C~II A; cOPies). 

It thus follows that V(A I ) is necessarily a type (1) star 
gl(mln) module. 

Then, V( A I ) serves as one of the building blocks of all 
the type ( 1 ) star modules of gl (m 1 n). Another one is V( A2 ) 
with 

A2 =(1,I, ... ,llw,0, ... ,0), wEl+. (11) 

In Proposition 5 below we will show that the highest weight 
of the dual module of V( A2 ) is 

AT = (0,0, ... ,010,0, ... ,0, - (w + m», (12) 

which is obviously type (2) -star since it is the rank (w + m) 
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symmetric tensor product of the contragrediant vector mod­
ule V(O, ... ,OI, ... ,O, -1) = V*(Aa ). Thus V(A2) is a type 
( 1) star module. 

Now let us construct the tensor product: Il-I 
® V(l,I, ... ,llwa,O,O, ... ,O), waEl+,wa;;;>wa+ l • 

a=l 

Following Lemmas 2 and 3, one of the component irreps 
occurring in this product is V(A 3 ) with 

A3 = (J.-l - 1,J.-l - 1, ... ,J.-l - llw l ,w2 , ... ,wll - I ,0,0, ... ,0). 
(13 ) 

Finally we form the tensor product V(AI ) ® V(A 3 ), which 
contains the irreducible module VeX) with 

X = (AI ,A2, .. ·)m -I ,J.-l- liwi ,w2 "",WIl - I ,0,0, ... ,0), 

A; = A; + J.-l- 1, A;.waEl+. (14) 

Since both V(A I ) and V(A3 ) are type (1) star, so too is 
VeX). 

Let us finally consider the representation of gl(mln) 
defined by 

irA(E~) =1TA(E~) + (_1)(a)D~w, wER (15) 

where 1T A is the irrep of gl (m 1 n) with,highest weight 

A = (AI ,A2 , .. ·,Am IWI , ... ,Wll- I ,w,w, ... ,w), (16) 

satisfying Am + W = J.-l - 1. Then irA gives rises to an irrep 
with highest weight (14) which, as we have seen, is type (1) 
star. This implies that 

1T~(E~) =ir~(E~) - (_1)(a)D~w 

=irA(E~) - (-I)(a)D~W 

=1TA(E~), 

so that V(A), with A as in Eq. (16), gives rise to a type (1)­
star irrep of gl(m In). 

Note that ( 16) is the most general form of a real AED + 

satisfying condition (10). Thus we have proved the follow­
ing. 

Theorem 3: Suppose AED + is real. The gl (m 1 n) irredu­
cible module V( A) is atypical and type (1) -star iff there 
exists an odd indexJ.-lE{I,2, ... ,n} such that 

(A + P,€m - 15,1 ) = (A,D
Il 

- Dn) = 0. (10') 

• 
Now we determine the lowest weight of V(A) with A 

satisfying (10'). Define a sequence of odd indices J.-l;, 
l<i<m, by 

J.-l; = [J.-lm + (A,€; - €m)] 1\ n, a 1\ b = min(a,b), 
(17) 

where 

J.-lm =J.-l- 1. 

For each iE{I,2, ... ,m}, we set 
Ili 

T; = IT E~ 
v=l 

and consider the sequence of vectors 

W; = T;w;+ I' Wm = TmvA. 

Note first that Wm #0 since 
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JIm 

(Wm Iwm) = (vAlvA). II (A + P'€m - 8y ) > 0, 
v=1 

where (I) is the nondegenerate sesquilinear form induced on 
V( A). However, 

W = E';:.n+ ITmvA = 0, 

because there are at most f.Lm odd raising operators E T' 
E f, ... ,E ';m which do not annihilate w, hence w, if nonzero, 
would generate a submodule of V(A) not containing the 
maximal state VA. Therefore, the existence of a nonvanishing 
w contradicts the irreducibility of V(A). Using the property 
of VA that 

E:~VA=O, Vvl,v2>f.Lm+l, VI =1=V2, (18) 

we obtain 

E;m+,w=E-;"wm =0, VV>f.Lm + 1. 

Thus 

E-;"wm =0, Vv. 

More generally consider the vector 

W; = T;T;+ I'" TmvA, 

which is nonvanishing since (by direct calculation) 

(w;lw;) >0, 

and gl(m) EB glen) maximal. Observe that, for f.L; < n, 

w' = E~'+ IW; = 0, 

otherwise w' would be a maximal gl ( m) EB gl( n) state with a 
nonlexical weight. Using ( 18) again, we can easily show that 

E~w; =0, Vv, 

and this implies 

Ejw; = 0, Vj>i,v = 1,2, ... ,n, 

because the odd lowering operators anticommute. 
Particularly interesting is 

WI = TI T2" 'Tmv\ 

which is nonvanishing, gl(m) EB gl(n) maximal and satisfy­
ing 

E~wI = 0, Vi,v, 

and therefore must be the highest weight vector of the mini­
mall-graded component of V( A). We have thus proved the 
following. 

Proposition 5: Let AED + satisfy 

(A + P'€m - 8J1) = (A,8J1 - 8n) = 0, 

for a fixed odd index f.L. Then, 
(i) the highest weight of the minimall-graded compo­

nent of the irreducible gl(mln) module V(A) is 

m J-li 

A=A- L L (€;-8,,); 
i= 1 V= 1 

(ii) the lowest weight of V(A) is 

A - = 7(A), 

where 7 is the unique Weyl group element sending the posi­
tive even roots into negative ones; 

(iii) V(A) admits dA + 1 levels with 
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m 

dA = L f.L;. • ;= 1 

We want to point out that our proof of Proposition 5 
does not depend on the fact that V( A) is type ( 1) -star, thus 
it is legitimate to use this result in proving Theorem 3. Ap­
plying (i) and (ii) to the highest weight defined by (11) we 
can easily see that the corresponding lowest weight is the 
negative of (12). 

B. Atypical type (2) star-irreps of gl(mln) 

Proposition 5 also enables us to classify the atypical type 
(2) star irreps explicitly in terms of their highest weights. 
Since there is a one-to-one correspondence between type ( 1) 

and type (2)-star modules via duality, the classification of 
atypical type (2) star irreps is actually accomplished by 
Theorem 3, although in an implicit way. Our task now is to 
make this classification explicit. 

Let us assume that V( A) is an atypical type (1) -star 
gl(mln) module, so that its highest weight A satisfies (10'). 
Consider the indices f.Li> i = 1,2, ... ,m, defined by (17). In the 
most general case, we have 

f.L1 =f.L2 = ... =f.L1 = n>f.LI+ 1 >f.L1+2>· ··>f.Lm>O, 

with 1 a fixed even index. We will allow the possibility that 
1 = 0, in which case we understand that n > f.L;, Vi' 

Using Proposition 5 we obtain the highest weight of the 
minimall-graded component of V(A), 

m Ili 

A=A- L L (€i- 8y). (19) 
;= I y= I 

Its even components can be easily read from this formula 

l = 4; - f.Li> V;. 

More explicitly, 

Aj = 4j - n, 1<)<1 

and 

Aj =4j -f.Lm - (A'€j -Em) 

= 4 m - f.L + 1, j> I. 

Thus the last m -I even components of A are all equal, i.e., 

(A'€'+I -Em) =0. 

Now let 7 be the unique Weyl group element sending positive 
even roots to negative ones, so that the lowest weight of 
V(A) is 

A - = 7(A). 

Then the highest weight of V*(A) is 

A*= -A-, 

satisfying 

(A*'€I -€m-I) =0. 

Observe that 

- (A* +P'€m-I - 81 ) 

= (7(A)'€m _I - 81 ) - (P'€m _I - 81 ) 

= (A'€l+t -8n )-1 

=AI + 1 +(In -I, 
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where Wit is the nth odd component of A, which is deter­
mined by (19) to be 

W" = (U" + I, 
hence, 

(A*+P'€m_I-8,) =0. (21) 

Equations (20) and (21) are satisfied by the highest weight 
of the dual module of every atypical type (1) -star module, 
from which we deduce that if V(A) is atypical and type (2)­
star then its highest weight AeD + must satisfy 

(A+p,Ek -8,)=0, (A,E'-€k)=O, l<k<m fixed. 
(22) 

To establish the converse, we need to show that condi­
tion (22) implies (10') for the highest weight of the dual 
module of VeAl. Let AeD + satisfy (22), and define even 
indices, m + l>i, >i2 >" '>i,,>I, by 

ip = [i, + (A,8, - 81')] VI, aV b = max(a,b), 
(23) 

with 

i l = k + 1. 

Using exactly the same argument as for proving Proposition 
5, we can show the following. 

Proposition 6: Let AeD + satisfy 

(A + P,Ek - 8, ) = 0 (A'€I - Ek ) = O. 

for a fixed even index k. Then. 
( i) the highest weight of the minimal Z-graded compo­

nent of the irreducible gl(m/n) module V(A) is 

" m 
A=A- L L (Ej -8v ); 

V= 1 j=i,. 

(ii) the lowest weight of VeAl is 

A - = r(A); 

(iii) VeAl admits dA + 1 levels with 

" dA = L (m+ l- iv)' 
v=l • 

From (i) we can see that the odd components of A are 
given by 

ill,.. = (Up + m + 1 - i,... 

In the most general case. we have 

i l >i2 >' ">i,;_, >i.; = i,;+ 1= ... = in = 1, 

so that 

illp = (Up - i,.. + m + 1 = (UI + m - k, for IJ <So 
ill,.. = (U,.. + m, for lJ>s. 

Therefore. the first S - 1 odd components of A are all equal. 
i.e .• 

(A,8, - 8';_1) = 0, 

which implies 

(r(A).8,,+2_'; -8,,)=0. 

Now observe that 
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(24) 

-(r(A) -p,€m -8,,+2-';) 

= -(A.€,-8,;_,)+(P.Em -8,,+2-';) 

= - XI - «(U, + m - k) - (n + 1 - s), 
where X I can be read off from (i) to be 

XI =A, - (n+ l-s)· 

Therefore. 

(-r(A) +P'€m -8,,+2-';)= - (A, +(U, +m-k) 

and using the fact that A, = A k, we obtain 

(A· +P.€m -8,,+2-s) = - (A+p,Ek -8,) =0, 
(25) 

where 

A· = - r(A). 

Combining (24) and (25) together we see that the highest 
weight ofthe dual of VeAl. i.e., V·(A), satisfies 

(A· + p,Em - 8,,+2_';-) = (A*,8n + 2- s - 8,,) = 0, 
(26) 

i.e., v· ( A) is a type ( 1 ) -star module following Theorem 3. 
Therefore, we have proved the following. 

Theorem 4: Let AeD + • The irreducible gl(mln) mod­
ule V(A) is atypical and type (2)-stariffthere exists an even 
index iE{t,2 ..... m} such that 

(A +p,E; - 8,) = (A,E, - E;) = O. (27) 

• 
V. TENSOR IRREPS OF gl(mln) 

Having classified all the star irreps of gl (m In). we now 
apply this classification to the so-called contravariant and 
covariant tensor irreps,7 which have been studied quite ex­
tensively using the Young diagram method.6-8 and Schur 
functions.9 We will show the following. 

Proposition 7: The contravariant and covariant tensor 
irreps of gl (m In) are star irreps of type (1) and type (2). 
respectively. 

• In view of the discussions leading to Theorem 3. we can 
easily see that the proposition holds. However, to make our 
argument more precise, recall that a contravariant tensor 
irrep7 of gl(mln) is by definition a tensor product of the 
vector irrep satisfying certain symmetry properties. Such an 
irrep can be characterized by a partition 

P= (PI 'P2 ... ·'Pm'Pm+ IPm+2,,,,,PN)' 

wherepaEZ + 'Pa >Pa + " Va and Pm + , <n is assumed. Asso­
ciated with each partition P, there exists a unique [up to the 
automorphism (15)] highest weight 

A = (A, ,A2 , ... ,Am I(U, '(U2 , ... ,w,,) 

with 

A; = p,., i = 1,2, ... ,m 

and the (Ua's defined by 

n Pm+ I Pm+Z PN 

L (Uv8v = L 8v, + L 8v , + ... + 2: 8vN _m ' 

\1=] v.=1 "2=1 "N_m=l 

Whenpm>n, we have 
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(A + p,Em - On) = Pm + (Un + 1 - n>(Un + 1> 0, 

hence, the irreducible gl(mln) module associated with the 
partition P is typical and type (1 )-star. If Pm < n, let us de­
fine 

It =Pm + 1. 

Since Pa <It, Va> m, we immediately see that 

(A,ov - 0",) = 0, Vv>1t 

and 

(A + p,Em - 0",) = Pm + 1 -It = O. 

Therefore, the irreducible gl(mln) module V(A) is atypical 
and type (1) -star. 

In a similar way, the covariant tensor irreps arise from 
tensor products of the contragredient vector module 
V*(Ao )' which is type (2)-star. Thus the covariant tensor 
irreps must all be type (2)-star. 

A direct consequence of the proposition is that the 
Young diagram method always produces irreducible irreps 
of gl( min) when applied to a given type oftensorirreps (Le., 
not a mixture of covariant and contravariant tensors!). As 
far as we are aware, a convincing proof was not given before 
for this generally accepted fact, which insures the applicabil­
ity of the Young diagram method to the two types of tensor 
irreps. 

It should be pointed out that the converse of Proposition 
7 is not true. Let us consider for example the type (1) star 
irreps. It can be easily seen that the atypical type (1) star 
irreps and those typical ones with 

c= (A+p,Em -on»O 

being integral constitute the contravariant tensor irreps and 
those irreps obtained by tensoring them with a one-dimen­
sional (I-D) representation. However, those irreps with c 
greater than zero but nonintegral are intrinsically different. 
In this case, we may write 

c = r + a, YEZ + , aE(O, 1). 

Thus, corresponding to each non-negative integer r, there 
exists a one-parameter family of typical type ( 1 ) star irreps, 
which are not tensorial, thus, cannot be dealt with by the 
Young diagram techniques. 

For type (2) star irreps the situation is the same. The 
irreps with c' = (A + p,EI - 01 ) negative and nonintegral 
are nontensorial, and the rest consists of the covariant tensor 
irreps and those obtained by tensoring them with a one-di­
mensional representation. 

VI. CONCLUSION 

We have systematically classified all the finite-dimen­
sional star irreps of gl( min) in terms of their highest 
weights. In particular we have shown in Theorems 1 and 3 
that a given gl(mln) module V(A), with AED + , is type 
(1 )-star iff (i) (A + p,Em - on) > 0; or (ii) there exists an 
odd indexlte{1,2, ... ,n} such that 
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(A + p,Em - 0",) = (A,o", - On) = O. 

In the former case the given condition also enforces typica· 
lity on V( A), while in the latter case all irreps are obviously 
atypical. Except for the typical type (1) star irreps with 
c = (A + p,Em - On) > 0 being nonintegral, the rest of the 
type ( 1 ) star irreps constitute the contravariant tensor irreps 
studied in Refs. 6-9 and their tensor products with I-D ir­
reps. The lowest weights of the atypical type (1) star mod­
ules are determined explicity in Proposition 5 (the lowest 
weight of a typical module is trivial to obtain). 

Theorems 2 and 4 give a complete classification of the 
type (2) star modules ofgl(mln). It is shown thatagl(mln) 
module V(A), with AED +' is type (2)-star iff (i) 
(A + p,E I - 0 I ) < 0; or (ii) there exists an even index 
kE{1,2, ... ,m} such that 

(A + p,Ek - 01 ) = (A,cI - Ek ) = 0. 

In the former case V( A) is typical, while in the latter case 
V( A) is atypical, the lowest weight of which is given in Prop­
osition 6. The atypical type (2) star irreps and the typicals 
with c' = (A + p,E1 - 01 ) being a negative integer, include 
the covariant tensor irreps of gl(mln), which have been 
studied quite extensively in the literature. 6-9 

It has been shown by Scheunert et al.4 and Van der 
Jeugt5 that only the type I basic classical Lie superalgebras 
admit finite-dimensional star irreps, thus, the results of this 
paper together with those of Refs. 1 and 2 provide a complete 
classification of the finite-dimensional star irreps of all the 
basic classical Lie superalgebras. We have also classified all 
the finite-dimensional grade star irreps of such superalge­
bras; these results will be reported in another publication. 

ACKNOWLEDGMENTS 

The authors take great pleasure in thanking Dr. A. J. 
Bracken for many fruitful discussions. 

We also gratefully acknowledge the financial support of 
an ARC research grant. 

1 M. D. Gould and R. B. Zhang, "Classification of All Star and Grade Star 
Irreps of g\( m 11 )," J. Math. Phys. (to be published). 

2 R. B. Zhang and M. D. Gould, "Classification of All Star and Grade Star 
Irreps of C(n)," J. Math. Phys. (to be published). 

.IV. G. Kac, Adv. Math. 26, 8 (1977); Lecture Notes ill Mathematics, Vol. 
676 (Springer, Berlin, 1978), p. 597. 

4M. Scheunert, W. Nahm, and V. Rittenberg, J. Math. Phys. 18, 146 
(1977). 

'J. Van derJeugt, J. Math. Phys. 26, 913 (1985). 
·P. H. Dondi and P. D. Jarvis, J. Phys. A 14, 547 (1981). 
7 A. B. Balantekin and I. Bars, J. Math. Phys. 22, 1149 (1981). 
"R. J. Farmer and P. D. Jarvis, J. Phys. A 16,473 (1983); 17, 2365 (1984); 
J. P. Humi, J. Phys. A 20,5755 (1987); A. Berele and A. Regev, Adv. 
Math. 64, 118 (1987). 

0B. G. Wybourne, J. Phys. A 17,1573 (1984). 
10 J. W. B. Hughes, J. Math. Phys. 22, 245 (1981); Ann. Israel Phys. Soc. 3, 

320 (1980); J. Van der Jeugt, J. Math. Phys. 25,3334 (1984); 28, 758 
(1987); w. Heidenreich, Phys. Lett. B 110,461 (1982); M. Scheunert, 
w. Nahm, and V. Rittenberg, J. Math. Phys. 18, 155 (1977). 

11 M. D. Gould, Rep. Math. Phys. 27, 73 (1989). 

M. D. Gould and R. B. Zhang 2559 



                                                                                                                                    

Automorphisms and general charge conjugations 
Grzegorz Cieciura 
Department of Mathematical Methods in Physics, Warsaw University, Boza 74, 00-682 Warsaw, Poland 

Igor Szczyrba 
Department of Mathematics and Applied Statistics, University of Northern Colorado, 
Greeley, Colorado 80639 

(Received 5 December 1989; accepted for publication 13 June 1990) 

It is shown how outer automorphisms of a semisimple Lie algebra and automorphisms of the 
corresponding root system describe conjugations of general charges. New results about 
representations of semidirect products of non-Abelian Lie groups and about projective 
representations of finite groups are derived. 

I. INTRODUCTION 

In many symmetry theories antiparticles are described 
by contragredient representations. Yet, a systematic study of 
a particle-antiparticle (or a general charge) conjugation 
was never done within the representation theory of a consid­
ered symmetry Lie algebra g. Some authors 1 describe a con­
jugation of general charges using Tits' group. 2 This group, 
however, provides only inner automorphisms from Int g. So 
it cannot link, e.g., inequivalent contragredient representa­
tions. 

Our main aim is to show how two automorphisms 
groups: the group Aut 9 and the group A (R), consisting of 
all automorphisms of the corresponding root system R, can 
be used to describe discrete symmetries mentioned above. 
We treat Aut gas a symmetry group whose representations 
describe physical states. If the physical interpretation re­
quires, we replace Aut 9 by G ><lOut g, where G is the sim­
ply connected Lie group corresponding to g,)q denotes an 
outer semidirect product, and Out g: = Aut g/Int g, cf. Sec. 
V below and Ref. 3. 

For simplicity of the exposition, we shall consider only a 
semisimple Lie algebra g. The generalization to a reductive 
case can be easily done following Sec. II in Ref. 4. 

A common belief is that physical relations are implied 
by transformation properties of observables with respect to 
the group Aut 9 or G)q Out g. We shall show that rather 
A (R) transformation properties of an observable are respon­
sible for relations among its eigenvalues. 

The group Aut 9 [resp. A (R) ] is a semidirect product of 
groups Int 9 [resp. W(R) ] and Out g, i.e., the following ex­
act short sequences split 

I--+Int g--+Aut g--+Out g--+ 1, 

1--+ W(R) --+A (R) --+Out 9 --+ 1. 

More detailed description of groups Aut g, Out g, and A (R) 
is given in Appendix A. 

II. REPRESENTATIONS OF SEMI DIRECT PROD­
UCTS 

To simplify the notation we shall assume that a Lie 
group A is an inner semidirect product of its Lie subgroups 
Wand D, i.e., 

A = WD, where W<lA and WnD = {I}. 

For our purpose it is sufficient to deal with a finite group D 
but most of the following results do not require this assump­
tion. 

Let (p, V) be a complex finite-dimensional representa­
tion of W. For any deD, the composition of the inner auto­
morphism d·d - 1 with p defines a W representation in V. 
The set 

(2.1 ) 

consisting of elements that provide representations equiva­
lent to p, is a subgroup. For any deDp ' there exists an opera­
tor O'(d)EGL( V) such that 

p(d'd -1) = O'(d)p(- )O'(d) -I. (2.2) 

Ifp is irreducible, each operator O'(d) is determined up to a 
scalar factor. Then any particular choice of operators O'(d), 
deDp' defines a lifting (0', V) of a projective Dp representa­
tion that is characterized by a two cocycle ,ueZ 2 (Dp 'C*). 
More precisely, the mapping O':Dp --+GL( V) satisfies 

O'(dl )0'(d2 ) = ,u(dl ,d2 )O'(dl d2), (2.3) 

where 

,u(dl,d2),u(dldz,d3) =,u(dl,d2d3),u(d2,d3)' (2.4) 

The lifting 0' is usually called in short a projective D p repre­
sentation. We shall use this simple terminology in the sequel, 
except for Appendix B where a detailed analysis of both no­
tions is given. Due to the fact that 0' fulfills condition (2.2), it 
will be called a projective p intertwining D p representation. Of 
course, suchp intertwining Dp representations exist also for 
reducible p's. 

Now let ( 'T,M) be an arbitrary projective D p representa­
tion corresponding to the same two cocycle,u ( . , . ) as 0', and 
let L: = V®M* = 2"(M,V). Relations (2.2)-(2.4), and 
Eq. (2.3) with 'T instead of 0', imply that 

K(wd)F: =p(w)O'(d)F'T(d) -I, WEW, deDp ' FEL, 
(2.5) 

defines an ordinary representation (K,L) of the group 

Ap: = W·DpCA. (2.6) 

The following theorem is a refinement of the resultsS
-

7 prov­
en for the case of general group extensions. 

Theorem I: (a) The representation Ind~/K,L) of a 
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group A induced from a representation (K,L) of A is irredu­
cible iff representations (p, V) and (r,M) are i:reducible. 
(b) Any irreducible representation of A is equivalent to a 
representation defined in part (a). 

Proo!' (a) To use the Mackey's irreducibility criterion, 8 

we must check that (i) theAp representation (K,L) is irredu­
cible, (ii) for all aEA such that aMp, representations K(') 
and K(a'a- I ) of the group Ba: =Apn(a-IApa) do not 
contain any common irreducible component. 

Ad (i): The irreducibility ofp and Eq. (2.5) imply that 
an operator intertwining the W representation (KI w,L) with 
itself is of the form L 3 F -. FoJ, where JEEnd M. Moreover, 
such operator intertwines theDp representation (KID ,L) iff 
J intertwines (r,M). Hence, the irreducibility of r implies 
that J = const·idM. 

Ad (ii): Since WCBo ' VaEA, it is sufficient to prove 
that the restrictions K(') I wand K(a'a - I) I ware disjoint. 
Due to relations 

K(a'a- I ) = K(W)K(d.d -I)K(W)-I 

=K(d·d -I), a = wd, 

the first restriction is a multiple of p('), whereas the second 
one is a multiple of p (d, d - I). But from Eq. (2.1) it follows 
that 

p(')=p(d'd -I) <=> dEDp <=> aEAp. 

So aMp means that p(.) d:::.p(d·d -I). The only if part is 
true because if representations p or r were reducible so 
would beK. 

(b) Let (ff, U) be an irreducible representation of A, let 
(p, V), VC U, be an irreducible W subrepresentation of 
( rr, U), where rr: = ffl w, and let L ~ V carry the correspond­
ing isotypic component, i.e., (rr,L), is a multiple of (p, V). 
Any subspace ff(a)LC U, aEA, carries also an isotypic com­
ponent of ffl w because 

ff(a)ff(w) = ff(awa-I)ff(a), weW, 

and Wis a normal subgroup. Subspaces ff(a)L, aEA, span U 
due to the irreducibility of ff. In addition to an isotypic W 
representation, the subspace L carries a representation 
(K,L): = (ffi A ,L) of the group 

p 

Ap: = {aEA Iff(a)L = L}. (2.7) 

This means, ex definitione, that (ff, U) is induced by (K,L). 
The representation (K,L) must be irreducible since it in­
duces the irreducible ( ff, U). On the other hand, the equation 

rr(w)ff(d) = ff(d)rr(d - Iwd), dED, 

implies that the isotypic W component carried by ff(d)L is 
equivalentto a multiple ofp(d - l·d).1t shows thatD coin­
cides with the set {dED Iff(d)L = L}. Thus A defined in 
(2.7) is equal toAp given by (2.6). Moreover, :e have oper­
ators u( d) EGL ( V) providing a projective p intertwining D 

. V) p representation (u, . 

The space L can be represented as a tensor product 
L = V®M·, where dim Mis the multiplicity of (p,V), i.e., 
K(W) = pew) ® idM* for weW. From Eq. (2.2) we get 

(u(d) ®idM*)K(W) = u(d)p(w) ®idM* 

= p(dwd - I )u(d) ® id M* 
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= K(dwd - I )(u(d) ® id M*)' dEDp. 

It proves thatthe operatorK( d - I )(u( d) ® id M*) commutes 
with operators K(W), wew. The irreducibility of p implies 
that this operator has the form id v ® r( d)·, where 
1'(d)EGL(M). So formula (2.5) is fulfilled and operators 
r(d), dEDp' provide a projective Dp representation (1',M) 
corresponding to the same two cocycle as (u, V). The repre­
sentation 1'is irreducible since so is K. • 

Corollary 1: The restriction rr: = ffl w is a direct sum of 
ID /Dp I isotypic components that are multiples ofinequiva­
lent irreducible representations p(d - I'd), dED, with the 
same multiplicity dim M. 0 

Remarks: (1) If A = W' D is a direct product, we have 
dwd - I = w. Consequently, (2.1) implies that D = D, 
whereas (2.2) implies that any operator u(d) co~mutes 
with all p(w)'s. Thus for an irreducible p we can set 
u(d) = idv and we obtain the known result: ff = K is a ten­
sor product of irreducible representations p and r. 

(2) In some applications, see Sec. V, it is sufficient to 
consider projective representations of A. Then cocycles cor­
responding to rand u need not to coincide. 

(3) A representation analogous to Ind~ (K,L) can be 
also constructed if we replace Dp by a proper ;ubgroup. But 
in, such case Theorem 1 does not hold. 

(4) The group Ap is called the inertia group of p, cf. Ref. 
9. 0 

The results obtained in this section will be applied in 
Secs. IV and V for the case where DC Out g, and W: = Int g 
or W: = W(R). Let us also notice that if g is simple then any 
subgroup D~Out g has trivial second cohomology group 
B 2 (D,C·), cf. Appendix A. It means that in the case of a 
simple g, any projective D representation can be replaced, 
non uniquely in general, by an ordinary representation. See 
Appendix B for details. 

III. REALIZATIONS OF THE REPRESENTATION 
Ind~ (K,L) 

p 

The representation Ind~p (K,L), where K is given by 
(2.5), can be realized on a subspace of functions from 
L D: = {F(' ):D-.L}. Namely, the formula 

(°F)(8): =p(8- l w8)F(d -18), a: = wdEA = WD, 

F(')EL D, OED, 

defines a left A action on L D, whereas the formula 

(doF) (8): = u(do )F(8do )r(do ) - I, doEDp, 

provides a left D p action. Both actions commute and as a 
result the subspace 

U: = {F(')ELDldoF(') =F('),VdoEDp' 

i.e.,F(·do ) =u(do)-IF(')r(do)} (3.0 

carries an A representation ff, where 

ff(a)F('): = °F('), aEA, F(' )EU. (3.2) 

lsotypic W subspaces in U are given by 

Ux : = {F(') 1£(8) = 0 for 8VCED /Dp}, 

and it is clear that ff=Ind~p (K,L). Compare Corollary 1. 
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We can also treat the group D as a space of a principal 
bundle with a base D IDp , and define an action of the struc­
tural group D p in the space L by formula 

K(do )F: = u(do )Fr(do ) -I, do ElJp , FEL. 

The associate vector bundle E: = D X D L consists of equiv-
p 

alence classes [8,F] that are defined in D X L by the equation 

[8,F] = [Ddo,K(do ) - IF], 8ElJ. 

Sections in E are mappings tP:8'Dp~[8,F(8)], where 
F( . ) EL D satisfies 

F(8do ) = u(do) - IF(8)r(do )' 

So the space of sections coincides with U given by (3.1). A 
left A action on E is defined by 

a'[8,F]:= [d8,p(8- lwI8)F], 

where a = dWI = dd -lwdEA. This action provides anA ac­
tion on sections that corresponds to the representation fr 
defined by (3.2). 

IV. ACTIONS OF A GROUP A kA(R) IN ZERO-WEIGHT 
SPACES 

In Ref. 4 we proved that zero-weight spaces of 9 repre­
sentations carry a canonical action II of the corresponding 
Weyl group W(R). We shall now show how to extend this 
action onto any subgroup A kA (R) that contains W(R). 

Let 9 be a split semisimple Lie algebra, let f) be its Cartan 
subalgebra, and let us set 

Auto (g,f): = Aut(g,f) nInt g, 

where Aut(g,f) consists of all 9 automorphisms that pre­
serve f). See Ref. 10. Three classes of groups: (a) subgroups G 
such that Int gkGkAut g, (b) subgroups G() such that 
Auto (g,f) k G() kAut(g,f), and (c) subgroups A such that 
W(R) kA kA (R) are in bijective correspondences. Indeed, 
it holds 

G() = GnAut(g,f), G = Int g'G(P 

and 

A = E( G1) ), G~ = E - I (A ), 

where eAut(g,f) ...... A(R) is the canonical homomorphism. 
All these subgroups are semidirect products. Moreover, 
each of these classes can be identified with the class of sub­
groups in Out g. See Appendix A for details. 

Since we are interested in representations of a group A in 
zero-weight spaces, we may consider only those 9 represen­
tations all of whose irreducible components have nontrivial 
zero-weight spaces. Proposition 1 in Ref. 4 implies that any 
such representation is radical, i.e., it is ictegrable to a repre­
sentation of Int g. 

However, the existence of an Int 9 representation ( 1r, U) 
is not sufficient to determine an action of a group A in the 
zero-weight space of U. We can only achieve this by consid­
ering a representation (fr, U) of the group G corresponding 
to A. In fact, let (ir, U) be the derivative of 1r: = frl 1nt ,thus 

n 

also of fr, and let A denote the weight diagram of ir, i.e., a 
function f)* ...... Z whose values A (A) are dimensions of weight 
spaces U(A), AEf)*. The support A of A forms the set of 
weights. Similarly as is done in Ref.-l0 for the group W(R), 
one can show that 
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fr(g) U(A.) = U(E(g)A.), gEG,p A.E~Cf)*. 

It implies that the zero-weight space U(O), OE~, is GIl invar­
iant. Moreover, the kernel ker EI G = eXPG f) acts trivially on 

I, 

U(O) because 

eXPG X I U(A) = e(A,X)idu(A) for XEf). 

So operators 
A 

IIa: = fr(g) I U(O) EEnd U(O), aEA, gEE-I{a}CG1P 

(4.1 ) 

a!.e correctly defined. They form an A representation 
(II,U(O» that is an extension of the canonical W(R) repre­
sentation (II,U(O» constructed in Ref. 4 by means of the 
representation (1r, U) . 

Example 1: LetdEAut(g,f) be an involutive outer auto­
morphism and let us set G: = Int g' D, where D: = {l,d}. 
Given an Int 9 representation (p, V) and a parameter 
O¥ZEC, the formulas 

fr(g): = [P(og) 0] A (d) [0 z] 
p(dgd -I) , 1r : = Z-I 0' 

gElnt g, z: = z· id v, 

define a G representation (fr, V E9 V). The Int 9 representa­
tion 1r = P E9 P (d, d - I) does not depend on z, and Theorem 
1 implies that fr is irreducible iff p is irreducible and 
pd:.p(d·d - I). In the latter case fris the only possible exten­
sion of 1r onto the grouPA G. Any representation fr determines 
a representation (II, V(O) E9 V(O» of the group 
A = W(R) 'E(D) that satisfies 

o ] A [0 , II.., = I 
II"'w.5-1 z- ~] , 

WEW(R), 8: = E(d), 

where II denotes the canonical W(R) representation acting 
in the zero-weight space V(O) of (p, V). If 9 = sl(n,C) and 
d(X): = - X' (transposed) for XEg then p(d'd -I) is 
equivalent to the representation contragredient to p. 0 

Example 2: Let G, p, and II be as above, and let JEEnd V 
be an involution. If 

p(d'd -I) = Jp(')J -I, dElJ, 

we can define two distinct G representations fr in Vby formu­
las 

fr(g):=p(g), fr(d):= ±J, gElntg, dElJ. 
A 

The corresponding A representations (II, V(O» satisfy 

ft = IIw' fill = ± JI V(OP WEW(R), 8: = E(d). 

Therefore, contrary to the W(R) case, zero-weight spaces of 
equivalent 9 representations may carry inequivalent repre­
sentations of A ¥ W(R). This fact is important for applica­
tions-see Example 3 in the next section. 0 

A 

Theorem 2: Let (II,U(O» be an arbitrary extension to a 
group A of the canonical W(R) action (II,U(O» that is pro­
vided by an Int 9 representation (1r, U). Then there exists at 
most one extension (fr,U) of (1r,U~to the group GCAut 9 
corresponding to A that provides (II, U( 0». 

PrOOF Since each 1r irreducible component in U has a 
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nontrivial zero-weight space, U is spanned by vectors 
1T(go )u, goeInt g, ueU(O). Furthermore, G = Int g'G() im­
plies that for any geG we can choose heG() such that 
ge(Int g) 'h, i.e., there exists heGI) such thatggoh -leInt g. 
Consequently, we obtain 

A 

fr(g)1T(go)U = 1T(ggoh -I)fr(h)u = 1T(ggoh -1)IIE(h) u. 

Thus a given ext~sion fr is uniquely determined by repre­
sentations 1T and II. _ 

We shall analyze now the structure of a representation 
'" (II,U(O») given by (4.1) in the case where the representation 

(fr,U) ofa group G = Int g'D, DCAut(g,f}), is obtained by 
construction described in Sec. II. So let (p, V) be a represen­
tation oflnt g. For any automorphism deAut( g,f}), the Int 9 
representationp(d'd -I) acting in the space V d = V corre­
sponds to a 9 representation pod, and the weight spaces satis­
fy V(€(d)A) = Vd(A), Aef}*. As a result we have 

Apod = Ap o€( d) and ~pOd = €( d) - I ~p' 

Moreover, for the canonical W(R) representations II and 
n d acting, respectively, in zero-weight spaces of representa­
tionsp andp(d·d -I), we have 

n~ = nE(d)W£(d) -I, WEW(R). 

Now if an operator a(d)eGL( V) fulfills Eq. (2.2) then 
pod = a(d)p(' )a(d) - I. Hence, we get 

a(d) yeA) = V(€(d)A) = Vd(A). 

Accordingly, the space YeO) is a(d) invariant. All that im­
plies the following facts. 

(1) The group Dp = {deD Ipod=p}, whereas 
€(Dp) = {8e€(D) lAp 08 = Ap}; compare Lemma 2 in Ref. 
3. 

(2) The zero-weight space YeO) is a(Dp ) invariant; we 
denote the corresponding Dp reprxsentation by (ao' YeO»). 

(3) The representation (n,U(O» of the group 
A = W(R) '€(D) corresponding to G = Int g'D can be di­
rectly obtained from the canonical W(R) representation 
(II,U(O» by the construction described in Sec. II if we sub­
stitute W(R) for W, (II,V(O» for (p,V), and (ao,V(O» for 
(a, V); we identify here €(D) with D. 

Let us notic~ that the group Dp (that has to be used in 
order to obtain II directly from n) is, in general, a proper 
subgroup of the group 

D II : = (deD III(€(d) (. )€(d -I»=II(')}, 

which is given by Definition (2.1) if we substitute II for p. 
Indeed, zero-weight spaces of inequivalent 9 representations 
may carry equivalent W(R) actions.4

•
11 See also Remark 3 

in Sec. II. 

V. ACTIONS OF THE GROUP A kA(R) AND PHYSICAL 
RELATIONS 

Our results from Ref. 4 show that the canonical W(R) 
representation n in zero-weight spaces is responsible for 
many physical relations that traditionally are believed to be 
implied by 9 transformation properties of observables. 

More precisely, let G be a simply connected Lie group 
corresponding to a split pair (g,f}), let (1T, U) be a G represen­
tation describing physical states, and let ir be the derivative 
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of 1T. The zero-weight space End U(O) of the 9 representa­
tion ad ir, acting in the space End U, coincides with the com­
mutant ir(f})' of the image ir(f}) CEnd U. The operators 
from ir(f}) represent basic observables given by the Cartan 
subalgebra f}. Consequently, the assumption that an observ­
able tJ eEnd U commutes with this basic observables implies 
that the canonical W(R) action II is defined on tJ. More­
over, in the considered case the canonical W(R) action is 
implemented by operators from End U since we have 

IIw(tJ) = 1T(g)tJ1T(g) -I, weW(R), (5.l) 

wherege(€oAd) -I{W}CG and Ad:G-Int g. 
According to Proposition 2 in Ref. 4, it follows from 

(5.1) that any particular W(R) transformation properties 
of an observable tJ provide specific linear relations among 
its eigenvalues or, more generally, among its diagonal ele­
ments. These relations depend on 9 transformation proper­
ties of tJ only in a sense that the zero-weight space of a given 
irreducible 9 component in ad ir carries a specific, in general 
reducible, II W(R) representation. It is important to realize 
that because the same irreducible W(R) representations 
may appear in zero-weight spaces of inequivalent irreducible 
components of ad ir, the same physical relations may be im­
posed by distinct 9 transformation properties of a given ob­
servable. 

As we explained in Sec. IV, to define the canonical 
W(R) action (II, End U(O» we do not need a Grepresenta­
tion acting in the space End U. In fact, it is sufficient to have 
only an Int 9 representation acting in the radical subspace of 
End U, i.e., in the subspace carrying all these irreducible 
subrepresentations of ad ir that have nontrivial zero-weight 
spaces. Note that if the representation 1T is irreducible then 
the space End U is radical. 

Now if we want to consider a bigger group 
A= W(R)'€(D), where D#{1}, the situation becomes 
more complicated. Namely, even if the Int 9 representation 
acting in the radical subspace of End U can be extended to a 
representation of the group G = Int g' D, the corresponding 
A action need not be implemented by operators from End U. 
However if, for instance, (1T, U) can be extended to a repre­
sentation (fr, U) of the group G:xl D then ft implements a 
natural A action on End U(O), i.e., any D action on states 
from U determines a D action on ire f})' that provides addi­
tional relations among eigenvalues of observables. 

Let us notice that an ordinary G representation in the 
radical part of End U, and hence an A action on observables, 
can also be implemented by a projective representation of 
G:xl D (or G) in U, compare Remark 2 in Sec. II. 

Since a D action in U can link both: equivalent and ine­
quivalent 9 irreducible subspaces, it is suitable to describe 
general charge conjugations. Moreover, contrary to the case 
of the group W(R), zero-weight spaces of eqUivalent 9 com­
ponents in End U may carry inequivalent A representations, 
cf. Example 2. This fact enables two observables to have the 
same 9 transformation properties and, at the same time, to 
provide distinct physical relations, e.g., the opposite change 
of signs under a transformation from D. To make it clear let 
us consider the following example. 

Example 3: In a flavor theory based on the Lie algebra 
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9 = su (n), antiparticles are described by contragredient rep­
resentations. Thus transformations of general charges corre­
sponding to the particle-antiparticle conjugation are char­
acterized by the groupD=Out g=Z2' In particular, for any 
self-contragredient G representation ( tT, U) describing parti­
cle and antiparticle states, there exists a natural Z2 action on 
the commutant ire f)' that is implemented by operators from 
End U. Furthermore, if tT is not trivial, the representation 
(ad ir, End U) contains the adjoint representation (ad,g) at 
least twice,12 and basic observables, i.e., elements from 
ire f) C ire f)', transform according to the representation ad. 

The Z2 action on basic observables leads to an equation 
for eigenvalues of the type e = - e. This explains why iso­
spin, electric charge, etc., change signs under the particle­
antiparticle conjugation. At the same time, it is possible to 
choose in this case a Z2 invariant mass operator (i.e., provid­
ing equal masses for particles and antiparticles) and such 
that its main component transforms also according to the 
representation ad. For instance, if states are described by the 
adjoint representation, i.e., (ir, U) = (ad,g), the representa­
tion (ad ir,End U) contains ad exactly twice. If we identify 
the space End U with the tensor product U ® U, the 9 iso­
morphic subspace that contains basic observables is included 
in the skew-symmetrical product U 1\ U, whereas the second 
9 isomorphic subspace can be chosen from the symmetrical 
product U8U, cf. Ref. 13. The group Z2 acts in U ® U by 
permuting factors and leads to equations e = ± e. D 

The next example provides more sophisticated math­
ematical structure. 

Example 4: The Lie algebra 9 = so (8) is the only simple 
Lie algebra with a non-Abelian group Out 9 =S3' A physical 
theory based on soC 8) can link two equivalent 9 irreducible 
subspaces of an irreducible representation (fT, U) of G XI S3 
because S3 has a two-dimensional irreducible representation 
( T,M), compare Example 1. 

Moreover, since there are three inequivalent eight-di­
mensional irreducible representations of soC 8), this algebra 
can describe conjugations of a three-valued general charge; 
and the action of the group S3 can be used to characterize 
chargeless states, e.g., colorless particles. 14 Finally, the exis­
tence of three inequivalent one-dimensional Z3 representa­
tions enables a physical model to include three distinct phase 
transformations. D 
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APPENDIX A: THE STRUCTURE OF THE GROUPS AUT 9 
ANDA(R) 

Let f) be a Cartan subalgebra of a semisimple split Lie 
algebra g, and let Aut(g,f) consist of all 9 automorphisms 
that preserve f). The canonical homomorphism \0 

E:Aut(g,f) --+A(R) is defined by formula 

E(s)a = aos-IIII' sEAut(g,f), aERCf)*. 

The subgroup 

Auto (g,f): = Aut(g,f) n Int 9 
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is normal and coincides with E-I(W(R»). In Ref. 10 it is 
proved that Aut (g,f) is a semidirect product of subgroups 
Auto (g,f) and 

a: = Aut(g,f),B,(Xa )aEB)=Out g. 

This implies that A (R) is a semidirect product of groups 
W(R) and E(a) =a. 

To prove that Aut 9 is a semidirect product of groups 
Int 9 and a, note that Int 9 acts transitively on a set of all 
Cartan subalgebras of g. Thus for any automorphism 
sEAut g, there exists rElnt 9 such that rosEAut(g,f), i.e., 

Aut 9 = Int g' Aut(g,f). 

Since Aut(g,f) = Auto (g,f)' a, we obtain hence 

Aut 9 = Int g·a. 

Moreover, we also have 

Int gna = Int gnAut(g,f) na 

= Auto (g,f) na = {I}, 

that concludes the proof. 
The subgroups listed in Sec. IV are semidirect products 

because if an extension 

1--+ W --+A --+A /W --+ 1 

splits, i.e., A = WoD, DCA, W<lA, WnD = {l}, then for 
any subgroup A ' CA containing the group W, the extension 

1--+ W --+A ' --+A '/W --+ 1 

splits too. Indeed, for D': = DnA " it holds wnD' = {I} 
and W·D'CA'. To show that A 'c W'D', let us notice that if 
aEA ' CA then a = wd, where WE Wand dED. Accordingly, 
we get d = w-laEA "A', i.e., dED'. 

Let us change slightly our notation. Let 9 denote a semi­
simple Lie algebra, let 9 be its simple component, and let 
n X g: = 9 Gl ••• Gl 9 denote the corresponding isotypic con­
stituent. The groups Aut g, Int g, Out g, A (Rg ), W(Rg) are 
direct sums of groups Aut(n X g), ... , W(R nxo ), respectively. 

Lemma 1: Let 9 be a simple Lie algebra. Then 
Aut(nxg) = (Aut g)nXl Sn. 

Proof For any automorphism sEAut(n X g) and iE T,n, 
an epimorphism Sj: = prj Os:n X 9 --+ 9 maps a component of 
n X 9 on a subalgebra in g. Because Sj images of all compo­
nents commute one with another, they must be equal to 9 or 
o (an endomorphism of a simple Lie algebra is either onto or 
trivial). Therefore all but one component must be mapped 
on 0, i.e., Sj defines an automorphism rjEAut g. In conse­
quence, the automorphism S has the form 

S(XI Gl ..• GlXn) = rlXu -i(1) Gl'" Gl rnXu - i(n)' O"ESn·• 

Corollary 2: For any simple split pair (g,f) it holds 

(a) Aut(nXg,nXf) =Aut(g,f)n)<l Sn' 

(b) A(Rnxg) =A(Ro )n)<l Sn' 

(c) Auto (n X g,n X f) = Auto (g,f)n, 

(d) W(Rnxo) = W(Rg )n, 

(e) Out(nxg)=(Outg)n><l Sn, 
where 

Out g=S3,Z2, or {I}. 
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Proof: The assertions follow from Lemma 1 and the fact 
that Int(nXg) is isomorphic to (lnt g)n. • 

For a simple Lie algebra g, the second cohomology 
group H 2(D,C*), see Appendix B, of any subgroup 
D~Out 9 is trivial due to the following lemma. 

Lemma 2: 

(a) H 2(Zn'C*) = {I}, 

(b) H 2(S3'C*) = {I}, 

(c) H 2(Sn'C*) =Z2 for n>3. 

Proof: (a) A projective representation (p, V) of 
Zn = {O,l, ... ,n - 1} is determined by an endomorphism 
p( 1 )EGL( V) such thatp( l)n = c'idy, CEC*. Replacing op­
eratorsp(k), kEZn, by operators b k'p (1)k, where bEC* and 
cb k = 1, we get an ordinary representation. 

(b) The group S3 is generated by two transpositions 
71 = (1,2) and 72 = (2,3) that satisfy 
ri = -G = (7172)3 = I. So a projective S3 representation 
(p,V) is defined by endomorphisms P: =p(71), 
Q: = p( 72 )EEnd V such that p2, Q2, and (PQ)3 are scalar 
operators. Multiplying P and Q by scalar coefficients we can 
substitute them by operators fulfilling P 2 = Q 2 = id y. 
Hence, for (PQ)3 = b'id y we have 

(PQ) 3QPQ = bQPQ => PQP = bQPQ, 

PQPCPQ) 3 = bPQP => QPQ = bPQP. 

As a result we get b = 1 or b = - 1. Replacing in the second 
casePby - P, we obtain (PQ)3 = idy, i.e., an ordinary rep­
resentation. Compare Ref. 15. 

C c) The group Sn is generated by transpositions 
7; = (i,i + 1), iE 1,n - 1, satisfying 

r7 = (7j 7j+ 1)3 = (7k71)2 = 1 for i,k,IE 1,n - 1, 

jE 1,n - 2, Ik -/1>2. 
Therefore, a projective Sn representation (p, V) is defined by 
operators T;EEnd V such that 

n=idy , (TjTj+I)3=bj 'id y , (Tk T/)2=ck/·id y • 

Computations done in part (b) for P = Tj and Q = Tj + 1 
imply that bj = ± 1. By a proper change of signs for Tj's we 
obtain bj = 1. Now from the relations 

id y = (Tk T/Tk)2 = (ck / T()2 = cYc/'id y , 

it follows that Ck / = ± 1. Moreover, for Ik - / I >2 there ex­
ists O"ESn such that 0"7kO"-1 = 71 and 0"7/0"-1 = 73 , So we 
get 

STkS -I = dT1, ST/S -I = d'T3, 

where SEEnd V corresponds to 0", and d 2 = d,2 = 1. It 
shows that 

S( Tk T/ )2S - 1 = (dTI d 'T3 )2. 

Hence, constants Ck / = CI3 = C do not depend on k,l. There­
fore, there exist at most two classes of projective S n represen­
tations corresponding to C = ± 1. This means that 
IH 2 (Sn'C*) 1<2. 

T(l prove that the representation with c = - 1 exists, let 
us choose in a Euclidean space E a set of vectors el , ••• ,en _ 1 
such that (e; lej ) is equal to 1, -~, orOif Ii - jl = 0,1, or >2, 
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respectively. Then, in the Clifford algebra ~ (E), we obtain 
e; = (ejej+ 1)3 = - (ek e/)2 = 1. Thus for any representa­
tion <,b: ~ (E) -End V, the operators T; = <,b(e;) satisfy the 
required relations. • 

APPENDIX B: PROJECTIVE REPRESENTATIONS 

Let D be a finite group. The group 
CZ(D,C*): = (C*)D XD consisting of two cochains contains 
a subgroup 

Z2(D,C*): = (PE(C*)D XD l,u(dpdz ),u(d l dz ,d3 ) 

= ,u(dl ,d2d3 ),u(d2,d3 )} 

of two cocycles that in turn contains a subgroup of two co­
boundries 

BZ(D,C*): = (PE(C*)D XD 13ve(C*)D: ,u(dl ,d2 ) = 

= v(dl )v(d2 )lv(d1dz )}. 

Two cocycles JL and,u' are equivalent if their quotient is a two 
coboundry, and 

H 2(D,C*): = Z2(D,C*)IB 2(D,C*) 

is called the second cohomology group. 16,9 
In this section by a projective representation of D, acting 

in a finite-dimensional vector space V, we mean a homomor­
phism 

Y:D-PGL( V). 

Any projective D representation Y has a lifting 

a:D-+GL( V) 

such that 

a(dl )a(dz ) = ,u(dl ,dz )a(dl dz ), (Bl) 

where JLEZ 2 (D,C*) due to the associativity of a product 
O"(d l )0"(d2 )a(d3 ). 

Another lifting 0"' = VO", ve(C*)D, defines an equivalent 
two cocycle 

,u' (d l ,dz ) = [v(d l )v(d2 )Iv(dl dz )],u(dl ,d2 ). 

So with any projective representation we can associate an 
element [,u] EH 2 (D,C*). In particular, the unit element in 
the group H 2(D,C*) corresponds to a class of projective 
representations that can be lifted to ordinary representa­
tions. (Note that two ordinary representations provide the 
same projective representation iff they differ by a character 
of D.) Furthermore, the tensor multiplication of projective 
representations becomes the multiplication of elements in 
HZ (D,C* ), whereas the contragredient representation is re­
lated to the inverse element. 

We shall prove now that every element [JL ]EHz(D,C*) 
is associated with a non empty class of projective representa­
tions. 

Lemma 3: (a) For any two cocycle ,uEZ 2 (D,C*), the 
formula 

(PI" (c)j)(d): =,u(d,c)f(dc), fECD, c,dED, 

defines a lifting (PI",CD) of a projective D representation 
(a'I",CD) that is characterized by [,u]EH 2(D,C*). 

(b) Equivalent two cocycles,u and,u' provide equivalent 
projective representations a'1" and a' fl" 
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Proof (a) Let us set f': = Pp. (c)/ Then we have 

(Pp. (c1 )Pp. (c)f)(d) = (Pp. (c1 )f')(d) 

= f,l(d,e1 )/' (dc1 ) 

= f,l (d,c1 )f,l(dc]>c)/(de1 c) 

= f,l(d,c1 c)f,l(c1 ,c)/(dc1 e) 

= f,l(c1 ,e)(pp. (c1 c)f)(d). 

(b) The liftings corresponding to equivalent two cocy­
cles f,l and f,l' are related by an endomorphism FeEnd CD, 
where (F/) (e): = v(c)/(c), in the following way: 

(Fpp. (e)F - ,/)(d) = l/v(c) . (Pp.' (e)/)(d). 

The operators Fpp. (e)F - 1 and Pp.' (e) give rise to the 
same projective representation because they differ by a sca­
lar factor v( c). • 

A mapping a:D --+ G L ( V) satisfying the condition (B 1 ) 
will be called af,l representation of D. Similarly, as for ordi­
nary representations, such notions as direct sum, irreducibi­
lity, intertwining operator, or equivalence are well defined 
for f,l representations. 

Lemma 4: An irreducible f,l representation (a, V) of D, 
f,leZ 2 (D,C*), is contained in thef,l representation (Pp.,CD

) 

with the multiplicity equal to dim V. 
Proof Schur's Lemma holds also for f,l representations 

and any f,l representation is fully reducible. 17
,15 So the con­

sidered multiplicity coincides with the dimension of the 
space Y D (V, CD) consisting of operators intertwining 
(a,V) and (Pp.,CD

). It remains to prove that 
Y D ( V,CD

) = V. 
To this end let us note that any intertwining operator 

F: V --+ CD has the form 

(Fv) (d) = (ifJd'V), veV, deD, ifJdEV*, 

and that the intertwining property Foa( c) = P p. (e) of, eeD, 
implies 

(ifJd,a(c)u) = f,l(d,c) (ifJdc'V), 

Hence, setting d = leD, we obtain (ifJc,v) = (ifJl>a(c)v). 
Thus the linear mapping 

Y D( V,CD
) 3R-.. ifJ1 eV* 

is injective. It is also surjective because any I/JeV* defines an 
intertwining operator by the formula 

(Fv)(c): = (ifJ,a(c)v). • 
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Now note that for a given projective representation Y 
and a corresponding f,l representation a, the group 

r(Y): = {XeHom(D,C*)lra=a} 

does not depend on a choice of a. Moreover, for a fixed two 
cocycle f,l, the number of nonequivalent f,l representations 
that correspond to the representation Y coincides with the 
index 

n(Y): = (Hom(D,C*):r(Y». 

In fact, two f,l representations a and a' provide equivalent 
projective representations iff a' = X· a for a certain character 
xeHom(D,C*). 

Corollary 3: Any irreducible projective D representation 
Y corresponding to an element [f,l]EH 2 (D,C*) is contained 
in the D projective representation g; p. [defined in part (a) of 
Lemma 3] with the multiplicity n (Y) . dim Y. So the rank 
of D is given by 

ID I = L n(Y) (dim y)2, 
.;/' 

where Y assumes all irreducible pairwise inequivalent pro­
jective representations corresponding to a fixed class in 
H 2 (D,C*). 0 
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A two-matrix function of general interest in the areas of configuration statistics of 
macromolecules, number theory, harmonic analysis, and multivariate statistics is studied. The 
function is defined as a Fourier integral over SO (3), the Lie group of orthogonal 3 X 3 matrices 
with unit determinant. This six-variable function is first expressed as a product of a three­
variable function and an exponential function of an additional variable, thereby reducing the 
total number of independent variables by 2. The new function with three parameters is 
expressible either as a double integral or as a series in one of the variables with the coefficients 
being polynomials in the other two. A special, nontrivial case where one of three arguments of 
the function takes a particular value is explored thoroughly. The resulting two-variable 
function is real valued and is an oscillating function of one of the variables when the other is 
fixed. When this function is expanded as a power series in one of the two variables, it generates 
polynomials in the other variable. Numerical analysis of this series shows it to be rapidly 
convergent and it is of practical use in the numerical evaluation of the function. Although the 
connection between these newly found polynomials and zonal polynomials has not been 
investigated, the parametrization for the four new variables of the two-matrix function studied 
may well prove useful in the effective numerical evaluation of the function when expressed 
alternatively as a series in zonal polynomials with an exponential part factored out. 

I. INTRODUCTION 

A Fourier integral over SO ( 3 ), the special orthogonal 
group, of the form 

F(a,b) = ~f etrUahbh')dh, (1) 
811 )SO(3) 

where etr(a) = exp[tr(a)], arises in the general formula­
tion of shape distribution functions for Gaussian molecules I­
s as well as in number theory,6 harmonic analysis,? and 
multivariate statistics.8

•
9 Here hESO(3), h' is the transpose 

of h, dh is the unnormalized Haar measure on SO (3), 
a = diag(a l ,a2,a3 ) and b = diag(bp b2,b3 ) with a;.bjER. 
That the function F(a,b) defined above is essentially a six­
dimensional Fourier integral can be seen from Hua's work 7 

on integrals over the orthogonal group. A common ap­
proach to evaluate the above integral has been to express 
F(a,b) as a series in zonal polynomials since 
F(a,b) = oF63 )Ua,b), where oF6m )(X,Y) is the two-matrix 
hypergeometric function. 8

-
10 Another studyll on F(a,b) 

made use of a parametrization ofb in terms of its skew sym­
metric part, and subsequently expressed the function as a 
double series. This approach yields an exact asymptotic ex­
pansion of the function. Similar evaluation of F( - ia,b) by 
use of a different parametrization of b has also appeared in 
the literature with the result expressed in a series of multiple 
sums of Beta functions. I 

In this paper, we begin by expressing F(a,b) as a new 
function of four variables instead of the original six matrix 
components. One component of this factorization, 
(1I3)tr(a)tr(b), has appeared before. 3.6. I I We then study 
in detail the nontrivial part of this redefined four-argument 
function, that is, the part of F(a,b) with 
exp[i(1/3)tr(a)tr(b)] factored out. We have found that 
this part of F( a,b), being itself an entirely new and well de-

fined three-variable function, can be conveniently expressed 
either as a simple double integral or as a series in one of the 
three variables with the coefficients being symmetric poly­
nomials in the other two. These polynomials can easily be 
written down to arbitrary degree, especially with the use of 
symbolic integration on a computer. The application of the 
double-integral representation to the evaluation of shape dis­
tribution functions for Gaussian macromolecules5 has been 
one of its most powerful advantages over many of the earlier 
approaches. 

II. THEORY 

We first make use of the classical Euler angles parame­
trization of the group SO(3), i.e., 

CaSy - saCpcy 

- SaSy + caCpcy 

- spCy 

where Ca = cos a, sp = sin {3, etc., and then transform the 
original Lebesgue integral to a mUltiple Riemann one with 
the invariant measure given byl2 db = sin {3 da d{3 dr, i.e., 

I L2" L" L2" F(a,b) = --.;;;. da sin{3 d{3 dr etrUahbb'). 
8 0 0 0 (3) 

To evaluate the above triple integral, we first write4
•
13 

tr(abbh') = j[tr(a)tr(b) - tr(a)tr(b)] 

+ tr(abbh'), (4) 

~here a = diag(a I3 ,a23,O) with aij = aj - aj, and 
b = diag(b 13,b23,O). In the nontrivial case where a,b=l=O,l, 
one can always rearrange the elements of a and b so that they 
are in descending order without changing the value of the 
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integral. We shall therefore take xij = Xi - Xj > 0 if i <j, 
with x: (a,b). The integral now depends on only four distinct 
combinations of the six elements of a and b, thereby reducing 
the number of independent variables of F(a,b) by 2. For 
convenience, we choose the following four parameters: 
E + = (!)tr(a)tr(b), E _ = q)tr(ii)tr(h), Ea = a I2/tr(ii) 
and Eb = bI2/tr(h) with - ao";E + ..; ao, 0 < E _ ..; ao and 
O";Ea , Eb ";1. In terms of these new variables, tr(ahbh') 
takes the form 

tr(abbh') = E + + (E _ /4) [80 + 3Eb (81 cos 2y 

- 82 sin 2y)], 

where 

and 

80 = 3r - 1 + 3Ea (1 - r)cos 2a, 

81 = 1 - r + Ea (1 + r)cos 2a, 

82 = 2Ear sin 2a 

r= - cosf3. 

(5) 

We now evaluate the integral in Eq. (3) by using the follow­
ing equalities: 

f1T f(cos 20, sin 20)dO = f1T f(cos 0, sin O)dO (6) 

and 

f1T g[cos(O + 00 ) ]dO = f1T g(cos O)dO, (7) 

where 00 is real and independent of 0 andf(x,y) and g(x) 
are any functions defined on - l..;x, y..; 1. The result is 

(8) 

where the function W(X I,x2,x3) takes the form of a double 
integral, one convenient choice of which is 

W(X I,X2,X3) 

=-I-ll drl21T dO exp{i XI [37](r,0,x2) -4]} 
2rr 0 0 4 

XJo[ 3Xt3 U(r,0,x2 ) ], (9) 

where Jo(x) is the Bessel function of the first kind of zero 
order, and the functions 7] (r,0,x2) and 5(r,0,x2) are defined 
as 

(10) 

and 

(11 ) 

We note also that with a change of variables to 
x = randy = 7](r,0,x2), Eq. (9) can be cast into the form 

W(X I,X2,X3) 

=-I-ll dx fY'dyexP[i(x/4)(3Y-4)] 

2rr 0 .JX y, ~(Y2-Y)(Y-YI) 

XJo[ 3Xt3 ~y2 - 4( 1 - x~)x ) , (12) 
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where y, = 1 - X2 + (1 + X2)X and Y2 = 1 + X2 
+ (1 - x 2 )x. The above integral may be evaluated numeri­

cally by use of the Fejer quadrature rule. 14 

Further analysis of the double integral in Eq. (9) may be 
carried out by using power-series representations of sin x, 
cos x, and Jo(x). The result is 

00 

W(X I,x2'X3) = L ( - l)"xin 

n=O 

" 
X L [Ctlm.2/(X~)-ixICtlm.2/+dx~)]x~m, 

m=O 

where / = n - m and Ctlml (x~ ) is given by 

32m 
CtI 1 (X

2 
) = --...,...-----

m 243m + 1(2rr)(m!)2/! 

Xf dr f1T dO 5 m (37] - 4)/. 

(13) 

(14) 

Notice that the Ctlml are functions of x~ as a result of the in­
ner integral over 0e[0,2rr]. We further note that Ctlml (x) is a 
polynomial of order n in x, i.e., 

n 

Ctlml(X) = L YrnlkXk. 
k=O 

(15) 

The coefficients Y mlk are calculated from the double integral 
in Eq. (14), which may be evaluated analytically for any 
given m and I. 

For the special value of Eb = 1/3, the imaginary part of 
W(E_ ,Ea,Eb ) vanishes as it follows that (E_ ,Ea ,1/3) is 
equal to its complex conjugate (see Ref. 4 for a proof of this 
property of the function). Thus one has 

( 1) 1 11 i 21T 

W 4X,E,- = - dr dO cos{x [ 47] (r,O,E) - 3]} 
3 2rr 0 0 

XJo[x~5(r,0,E)] , (16) 

which generates polynomials Ctln (c) of degree n, i.e., 

W(4.[X,J€,~)= i: (-l)"X nCtln (E)=W(X,E). (17) 
3 "=0 

The coefficients CtI" (E) can be obtained analogously to calcu­
lating Yrnlk in Eq. (15). For n = 0 and 1, for example, one 
has Ctlo(E) = 1 and CtlI(E) =/,(1 + 3E). The function 
W(X,E) is of use in the newly-developed computational algo­
rithm for the computation of shape distribution functions for 
macromolecules of arbitrary complexity.5 

In Fig. 1, we plot W(X,E) against x for five selected 
values of E E [0,1]. As can be seen, W(X,E) is an oscillating 
function of x for any given E, decreasing very rapidly as x 
increases initially from zero to the first zero of the function 
and reaching a zero limit as x -+ ao. This oscillating behavior 
implies that W(X,E) may be expressed in terms of classical 
orthogonal polynomials. Unfortunately, we have not been 
able to accomplish this. It is also seen from Fig. 1 that the 
numerical value of the first zero of W(X,E) decreases as E 

increases from zero to 1. Our calculations show that the se­
ries representation given in Eq. (17) for W(X,E), when trun­
cated at n = 10, yields results that are accurate to at least two 
digits after the decimal for x lying within the first zero of the 
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FIG. 1. Plots of W(X,E) as a function of x for five values of E. 

function for any given E when compared with those obtained 
by numerical quadrature of the double integral in Eq. (16). 
For small E, the truncated series can be used very effectively 
in the computation of the function for a wide range of values 
ofx. In a sample calculation of W(X,E) for E = 0, for exam­
ple, an absolute error of less than 10 - 6 was found for x 
varying from zero to about 6.7 when only the first 11 expres­
sions for (J) n (E) were used. For larger values of E and x, more 
terms in the series are required. 

III. CONCLUSION 

The two-matrix function F(a,b), when expressed as the 
three-variable function WeE _ ,Ea,Eb ) multiplied by 
exp(iE + ), shows a number of interesting new features that 
have not been revealed in previous works. This three-vari­
able function can be represented either as a double integral 
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whose integrand involves the Bessel function of the first kind 
of zero order or as a series in one of the variables with each 
coefficient being a polynomial in the other two parameters. 
For Eb = 113, this function is real-valued and when it is ex­
panded as a power series in c_ it generates polynomials in 
~. The series for W(X,E) has been numerically shown to be 
rapidly convergent. Although the connection between these 
polynomials and zonal polynomials has not been explored, 
the parametrization used in this work for the four indepen­
dent variables of the F function may prove useful for the 
effective numerical computation of the function expressed 
alternatively as a series in zonal polynomials multiplied by 
an exponential factor. 
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A new parametrization for the independent variables of the two-matrix hypergeometric 
function oF f/' (a,b) is given. This parametrization results in a net reduction of two variables. 
The new arguments for the zonal polynomials in the series representation of oF bkl (a,b), 
multiplied by an exponential factor, are all in the interval [0,1], which greatly improves the 
convergence of the series. The results are of practical use in a number of applications, such as 
the configuration statistics of macromolecules, shapes of random walks, and multivariate 
statistics. 

I. INTRODUCTION 

The two-matrix hypergeometric function oFbkl (a,b) 
(Ref.1) where a and bare k X k diagonal matrices, has found 
wide applications in the formulations of both the joint den­
sity function of the latent roots of the Wishart matrix in 
multivariate statistics2 and the shape distribution function in 
the configuration statistics of macromolecules. 3 The compu­
tation of oF b kl (a,b) in the latter case has become increasing­
ly important due to the useful information it contains about 
the shapes of chain molecules in the unperturbed state or the 
trails left by a random walker. 3-5 It is well known that when 
the integral representation of oFbkl(a,b) is used, the func­
tion may be numerically evaluated by quadrature methods 
with a proper choice of parametrization of an element of the 
special orthogonal group.6,7 More generally, however, 
oFbkl(a,b) is expressed as a series in zonal polynomials.,,2 
This representation provides an elegant analytic solution of 
the integral which is otherwise difficult to solve in a simple 
form except for k = 2 and 3, Unfortunately, such series is 
generally slowly convergent, although some effort has been 
made to improve the convergence.8 It is therefore desirable 
to accelerate the speed of convergence of the series if it is to 
be used effectively in the numerical evaluation of oF J/ l (a,b). 
This short paper deals with a new parametrization of the 
independent variables of oFbk

) (a,b), and it shows that much 
faster convergence for the series can be achieved. 

The integral representation of oFbkl(a,b) is'-3,7,9 

oFbkl(a,b) = 1 (etr(ahbh')dh, (1) 
V[SO(k) 1 JSO(k) 

wherehESO(k), h' is the transpose ofh, and dh is the unnor­
malized Haarmeasure on SOCk). Without loss of generality, 
the diagonal elements of a and b may be assumed to be in 
descending order for the nontrival case of a,b, :;6 0,1. We then 
make use ofthe identity4,7"O., , 

tr(ahbh') = O/k)[tr(a)tr(b) - tr(a)tr(b)] 

+ tr(abbb'), (2) 

where i = x - Xk 1 with x: (a,b). Substituting Eq.(2) into 
Eq. (1), one obtains 

oFbkl(a,b) = exp{( 11k) [tr(a)tr(b) 

- tr(a)tr(b) ]}oFbkl(a,b). (3) 

Now rewrite i as 

o 
(4) 

or 

(5) 

where Xy =diag(1,z"z2, .. ,zk_2) with Zj = (Yj+, -Yk)1 
(YI - Yk) andy:(a,b). Note thatO,,;;zj < 1. We further define 
x + = tr{a)tr(b) and x _ = Cal - a k ) (b, - bk ) with 
- oo";;X + ..;; 00 and 0 < x _ ..;; 00 • In terms of these new vari­

ables and with use of standard results,I-3,9 Eq. (3) becomes 

oFbk)(a,b) = exp{ (1lk) [x+ - x_ tr(xa )tr(xb)]} 

X f x~ L CK(Xa)CK(Xb ) , (6) 

m = 0 m! K CK (lk ) 

where CK (xa ) is a zonal polynomial. 
Zonal polynomials CK (xa ) are symmetric homoge­

neous functions of degree k - 1 in the elements of Xa with 
k = (m"m 2, ... ,mk _ I) being a partition of m into no more 
thank - 1 parts such thatm;#Oandl:;m; = m (Refs. 1 and 
2). Note that Eq. (6) defines a new function of 2(k - 1) 
independent variables. For small x _ , the series in Eq. (6) is 
rapidly convergent since all the elements ofxa and Xb are in 
the interval [0,1]. This improved convergence was first seen 
in the numerical evaluation of oF b3

) (ia,b) expressed in a 
form similar to that given in Eq. (6) with a slightly different 
choice of the parameters. II For large, x _ , however, the im­
provement on the convergence of the series is not substan-
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tial. Nevertheless, the choice of the new set of variables is 
always useful in effective numerical evaluations of 
oFi/)(a,b). 

II. CONCLUSION 

In summary, a new parametrization for the independent 
variables of oFbk

) (a,b) has been found, which reduces the 
number of independent variables of the function by two for 
any k. The new parametrization results in the improved con­
vergence of the series in zonal polynomials representing part 
of oFf/)(a,b), with the exponential part factored out. This 
improved convergence may well prove useful for the numeri­
cal evaluation of oF~/)(a,b) by a truncated series of zonal 
polynomials. Computations of these functions find use in a 
number of areas, such as configuration statistics of macro­
molecules, shapes of random walks, and multivariate statis­
tics. 
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T~e possibility of t~e exis~ence of new integrable partial differential equations is investigated, 
usmg the tools of smgulanty analysis. The equations treated are written in the Hirota bilinear 
formalism. It is shown here how to apply the Painleve method directly under the bilinear form. 
Just by studying the dominant part of the equations, the number of cases to be considered can 
be limited drastically. Finally, the partial differential equations identified in a previous work 
[J. Hietarinta,~. Math. ~hys. 28, 1732,2096, and 2586 (1987); 29, 628 (1988)] as possessing 
at least four solIton solutIOns, are shown to pass the Painleve test as well which is a strong 
indication of their integrability. ' 

I. INTRODUCTION 

In the 20 years since the discovery of the soliton and of 
the integrable character of the Korteweg-de Vries (KdV) 
equation, a large number of integrable partial differential 
equations (POEs) have been found by various methods. The 
notion of integrability has also been refined during this time. 
Apart from the really exceptional cases where a POE is inte­
grable through quadratures, two kinds of integrabilities can 
be distinguished: In the terminology of Calogero, J these are 
C integrability, when the POE is linearized through a local 
(Cole-Hopftype) transformation, and S-integrability when 
the linearization proceeds through a "spectral" or inverse 
scattering transform. 

There are several properties that are encountered in the 
integrable POEs and are often taken as synonyms to integra­
bility: 

( 1) algebraic properties, existence of an infinite se­
quence of conserved quantities, imbedding in a hierarchy of 
equations. In addition, the equation can be written as a con­
sistency condition for a pair oflinear equations, the so-called 
Lax pair. 

(2) existence 0/ a certain type 0/ special solutions, soli­
tary waves and multisoliton solutions. 

(3) analytical properties, the solutions of the POEs pos­
sess the Painleve property, i.e., they are free from "movable" 
critical singularities. 

The search for new integrable nonlinear equations pro­
ceeds in various ways. One can study the algebraic properties 
that characterize a given POE and try to obtain other equa­
tions that have these same properties. Whole hierarchies of 
equations have been obtained in this way.2 Alternatively, 
one can start with an equation, often suggested by some 
physical problem, and investigate whether this equation pos­
sesses the special analytical properties (Painleve) and/or 
particular solution of multisoliton type. 

The advantage of investigating the Painleve property 
and the existence of multi soliton solutions lies in the fact that 
their study can be made algorithmically. Thus, although no 

rigorous theorems exist, one can consider these two ap­
proaches as providing integrability criteria. Their combined 
use3 constitutes a powerful integrability prognosticator: 
Equations that pass both tests are most probably integrable. 
In fact, no counterexample to this last statement is known to 
date. 

In a series of papers,4 one of us (JH) has presented a 
systematic search for equations having multisoliton solu­
tions. Several candidates for integrability have been identi­
fied this way. This study will be complemented here by the 
application of singularity analysis methods (Painleve prop­
erty) to the equations isolated by the previous approach. The 
equations that satisfy both integrability criterions are either 
known integrable equations or new ones the integrability of 
which is a "safe bet." 

This paper is organized as follows. In Sec. II we recall 
briefly the Hirota formalism that allows for a compact 
expression for the nonlinear equations studied here. Sections 
III and IV are devoted to the implementation of the Painleve 
analysis to the various equations obtained in Ref. 4. The 
main improvement over previous treatments is that the anal­
ysis is performed directly under the bilinear form of the 
equation: There is no need to write the equations in their 
"usual" nonlinear form in order to perform the singularity 
analysis. After presenting a summary of our findings, com­
paring them to the conclusions of Ref. 4 concerning the exis­
tence of soliton solutions, we discuss the problems that re­
main open and cannot be settled by the present approach. 

II. THE HIROTA BILINEAR FORMALISM 

The Hirota bilinear formalism was introduced initially 
as a compact way of writing nonlinear POEs and is based on 
a dependent variable transformation. 5 Let us start with the 
KdV equation, in its so-called "potential" form: 

uxxx - 3ux 2 + u, = 0 

and introduce the transformation: 

u = - 2 a x log F. 

(2.1 ) 

(2.2) 
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Note that under this transformation the one-soliton (or, 
rather, one-kink) solution: 

UI = - p{tanh(1]/2) + 1) (2.3) 

(where 1] = px + Ot + 1]0 and 0 + p3 = 0) writes: 

UI = - 2 ax log FI , (2.4) 

where 

(2.5) 

We remark that in terms of FI the one-soliton solution is 
written as a finite sum of exponentials. The usual KdV equa­
tion is the x derivative of Eq. (2.1), written in terms of 
v = ax u. Note also that in terms of the scattering matrix M, 
given by the solution of the Gel'fand-Levitan-Martchenko 
equation which is the final step of the inverse scattering 
transform, the variable v is expressed as 
v = - 2 ax 2 log det M. 

In terms of the new variable F, Eq. (2.1) is written as 

FFxxxx - 4FxFxxx + 3Fxx 2 + FFx, - FxF, = O. (2.6) 

Hirota has introduced a new bilinear operator D that 
helps express (2.6) in a more compact form. ThesymbolDis 
defined as 

D';D;" ·F·G = (ax - ax' )m(ay - ay' )n •• ·F(x,y, ... ) 

xG(x',y', ... ) Ix'=x,y' =y •.. ' (2.7) 

( 1) KdV type A F· F = 0; 

(2) modified KdV (MKdV) and 

where the dots stand for possible additional independent 
variables. Note that the parity of a monomial in D under the 
interchange of F and G is just the same as that of its total 
degree. Using the D operator Eq. (2.6) can be rewritten as 

(2.8) 

Initially the Hirota formalism has beenjust a most con­
venient tool for the construction of multi soliton solutions of 
nonlinear PDEs. Recently, however, through the works of 
the Kyoto group, its deep mathematical meaning in the theo­
ry of the integrability of bilinear PDEs has been brought into 
light. 2 

As mentioned earlier, various nonlinear PDEs were ex­
amined in Ref. 4 from the point of view of the "Hirota" 
integrability, i.e., the existence of multi soliton solutions. In 
these studies, no recursive proof of the existence of N-soliton 
solutions for all N was attempted, but rather the investiga­
tion was limited to the existence of three- and four-soliton 
solutions. The constraints linked to the existence of these 
highly nontrivial solutions are nevertheless so strong that we 
believe that the PDEs which pass this first test are very good 
candidates for integrability. In the next section, we will ap­
ply a second integrability detector on these candidates. 

The following five classes of nonlinear PDEs were stud­
ied in Ref. 4: 

(2.9) 

(3) sine-Gordon (SG) types A(F'F - G'G) = 0, B F-G = 0; (2.10) 

(2.11 ) 

(2.12) 

( 4) nonlinear Schr6dinger (NLS) type A F· F = GG·, B F' G = 0, B· F· G· = 0; 

(5) Benjamin-Ono (B-O) type B G· G· = 0, 

where A and B are polynomials in Dx ' D" etc., A being al­
ways even. The distinction between the MKdV and the SG 
types is based on the parity of B which is odd in the former 
and even in the latter. For the NLS and B-O cases, the poly­
nomial B is complex, with an even "real part" and an odd 
"imaginary part" i.e., BCiDx ,W",oo) is real. These five 
classes were chosen because they apply to well-known equa­
tions and because they are "generic" in the sense that for 
these bilinear equations the existence of two-soliton solu­
tions implies only parity conditions on the polynomials A 
andB. 

III. THE PAINLEVE TEST IN BILINEAR FORM 

A. General 

In order to test a given PDE for the Painleve property, 
Ablowitz, Ramani, and Segur introduced an algorithm6 that 
deals with the reductions to ordinary differential equations 
(ODEs) of the initial equation. This intermediate step was . 
not, in fact, necessary and later Weiss? and co-workers pro­
posed the following formulation of the Painleve conjecture: 
A PDE possesses the Painleve property if its solutions are 
single-valued about a (noncharacteristic) arbitrary singu­
larity manifold. To be more specific, if the singularity mani-
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fold is given by cp(x,y,z,oo.) = 0 then the solution of the PDE 
must have the expansion: 

u(x,y,z,oo.) = cpa(x,y,z,oo.) 

xI Un (x,y,z,oo.)cpn(x,y,z,oo.), (3.1) 

where the un are analytic functions in the neighborhood of 
the singularity manifold and a is a (negative) integer. If the 
equation is singular, i.e., if the coefficient of the highest-or­
der derivative may vanish, the values of U which cancel this 
coefficient must be analyzed as well. In the case of bilinear 
equations this means that one must consider the zeroes of F 
(and G, G·), i.e., a positive integer in (3.1). The arbitrari­
ness of the singularity manifold plays the role of the movable 
character of the singularities of nonlinear ODEs. 

The only drawback of this method is that the calcula­
tions it leads to are quite lengthy. To reduce the amount of 
computations, Kruskal8 proposed to solve locally for one of 
the variables and write, for instance 

cp(x,y,z,oo.)::::::x + f/!(y,z,oo.). (3.2) 

Similarly, in the expansion (3.1), the coefficients Un would 
depend only on the remaining variables y, z'oo., but not on x, 
in the case shown above. (The initial formulation of the algo-
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rithm by Weiss is still quite useful as it allows to obtain Back­
lund transformations for the solutions of the PDEs.) 

Here, we will apply the Weiss-Kruskal algorithm to 
various bilinear equations. First, we must start with a suit­
able ansatz for F. By analogy to the KdV example above in 
which Fwas an entire function we expect that for integrabi­
lity, F must be entire. Therefore, we look for F of the form 

00 

F= t/ln L fmt/lm, n>O. (3.3 ) 
m=O 

Thus to a singularity of u corresponds a (possibly multiple) 
zero of F. If there are several functions F, G, etc., then a 
"singular" expansion would correspond to at least some of 
them having a zero of some multiplicity. 

B. The leading behavior for KdV type equations 

The algorithm for the Painleve test proceeds in the usual 
ARS steps. First, one must find all the leading behaviors. Let 
us analyze in detail the case of a single component, KdV type 
equation. We suppose that the equation is of order 2p, i.e., 
the highest degree in D of a monomial in A is 2p: 

(D~ + lower-order terms)F'F= 0. (3.4) 

To find the leading behavior we take just F'Zt/ln. We 
have 

D;PF'F = D~t/ln.t/ln 

= I. (- 1) k (2P)a ~ t/ln a ~ -k t/ln 
k=O k 

= (2p)!t/l2n-2p I. (_I)k(n)(n - k) 
k=O k 2p-k 

= (2p)!t/l2n-2p( - l)pG), (3.5) 

where we have used well-known identities on the binomial 
coefficients. Thus it is clear that the lhs of (3.4) will vanish 
whenever (;) vanishes, i.e., for n = 0, 1, ... ,p - 1. This gives 
the possible leading behaviors of a KdV type equation. 

It may happen that there exist several terms of the same 
homogeneity with a different x, y, ... dependence. As far as 
the leading behaviors and resonances are concerned, this fact 
is of no concern. Assuming that the singUlarity manifold has 
the form (3.2) it is straightforward to show that the effect of 
such terms is to multiply the lhs of the dominant term of the 
equation by a factor that does not vanish outside of charac­
teristics. For instance, the KdV type equation 

(D! + DxD;)F'F= ° (3.6) 

has the same highest-order term as 

D!F'F=O (3.7) 

up to multiplicative factor (1 + 1/;;). 
Let us now proceed to the resonances ofEq. (3.4). Start­

ingfrom a given leading behavior F'Zt/ln (n = 0, 1, ... ,p - 1), 
we expand as 

F= t/ln(1 + wt/lr) (3.8) 

and collect terms linear in w in Eq. (3.4). We find 
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D~F'F = D~t/ln.t/ln 

+ w(D ;pt/ln + r.t/ln + D ;pt/ln.t/ln + r) + O(W2). 
(3.9) 

So the equation for the resonances r is given by 

D ~t/ln + r.t/ln 
Qn (r) == t/l2n + r _ 2p = 0, 

or, equivalently 

(3.10) 

Qn (r) = I. (_ l)k(2P) (n + r)! n! 
k=O k (n+r-k)! (n-2p+k)! 

= (2p)! k~O (- l)k(n; r)cp ~ k)' (3.11) 

The quantity Qn (r) = Qn (r)/(2p)! can be rewritten as 

- n k(n)( r ) Qn (r) = k~O ( - 1) k 2p _ 2k . (3.12) 

At this stage, no further simplification appears possible for 
general n. Still, for a given n expression (3.12) can be com­
puted as a finite sum. For n = 0, we have simply 

(3.13 ) 

with roots r = 0, 1, ... ,2p - 1. Note that as n = 0, the leading 
behavior is not a zero but a regular point (note that u is also 
regular at that point), and thus r = - 1 is not a resonance. 

For n = 1, we have 

Q\ (r) = (~) - (2P ~ 2) 
= ( r ) (r + l)(r - 4p + 2) , 

2p - 2 2p(2p - 1) 
(3.14) 

with resonances r = - 1, 0, ... ,2p - 3, and 4p - 2. 
For n = 2, we find r = - 2, - 1, 0, ... ,2p - 5, and 

(8p - 7 ± ~ 16p + 1 ) 12. Thus unless 2p is of the form 

2p=m(m-l)/2, (3.15) 

with integer m, two irrational resonances exist and the equa­
tion does not possess the Painleve property. Thus only PDEs 
with leading terms of degree 2p = 6, 10,28, 36, ... , can possi­
bly survive (and of course also 2p = 2, 4 for which the possi­
bility n = 2 does not exist!). 

For n = 3, we have r = - 3, - 2, - 1, 0, ... ,2p - 7, 

4p - 6, and (8p - 9 ± ~ 48p + 1 ) /2. For the last two reson­
ances to be integer, it is necessary that 2p be of the form 

2p = k(k - 1 )/6, (3.16) 

for some integer k. This does not exclude 2p = 6, however, 
because n can be at most 2 in that case. Together with (3.15), 
Eq. (3.16) severely restricts the possible values of 2p beyond 
8. Indeed, the solutions can be expressed in terms of the 
continued fraction expansion of v'3, and increase exponen­
tially. The first six solutions are 

2p = 210, 2926, 7906276, 110120220, 

297544793910, 4144264359690. 

For n = 4, the resonances are r = - 4, - 3, - 2, - 1, 
0, ... ,2p - 9 and the four roots of a fourth-order equation: 
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r4 + 2,-3( - 8p + 13) + r2(96p2 - 336p + 251) 

+ 2r( - 128p3 + 720p2 - 1184p + 533) 

+ 16(16p4 - 128p3 + 344p2 - 352p + 105) = O. 
(3.17) 

Using the REDUCE symbolic algebra system,9 we have 
checked that this equation does not have integer roots for 
any of the six first values above. Thus if any value of 2p > 6 
passes the first three nontrivial conditions for n = 2,3, and 4, 
it must at least equal to the seventh value of the above se­
quence which is larger than 1016

• But by that time, there are 
an additional 5 X 1015 conditions to be met, so although this 
does not constitute a rigorous proof it is extremely improba­
ble that any of these higher values ofp meet the requirement 
that all resonances be integers. Therefore, we conclude that 
2,4, and 6 are the only possible values of2p for an integrable 
KdV type equation. 

Once the nonintegrable character of the KdV type equa­
tions with 2p> 6 has been established, we can extend the 
above treatment to the other types of equations. For the 
MKdV, SG, and NLS types, since we can always choose G 
(and G *) to vanish, it follows that A is at most of degree 6 in 
D. 

c. The leading part for the SG type equations 

For the SG case where B is also even, an important re­
mark is that through the change of variables F' = F + G, 
G ' = F - G, A and B are interchanged. This shows that, 
since one can take G' = 0, that B is also of degree 6 at most 
and moreover that one can choose without loss of generality 

dOB<;.doA<;.6. 

where dO denotes the degree in D. 
If A = B, the system decouples into two equations for 

the quantities F ± = F ± iG, namely 

A F+ 'F+ =0, 

A F_'F_ =0. 

Therefore, if for some Ao, the equation Ao F' F = 0 is inte­
grable, then the SG system with A = B = Ao is also integra­
ble. Since different A 's and B 's of the same degree in D can­
not be distinguished at the two first steps (leading behaviors 
and resonances) of the analysis, but only at the third step 
(resonance conditions) it is clear that, since such Ao 's exist 
for 2p = 2, 4 and 6, we cannot eliminate the cases 

dOB = dOA = 2,4,6, 

until we check the resonance conditions. 
We must now consider the cases 

dOB=2, dOA =4, 

dOB=2, dOA=6, 

dOB=4, dOA=6. 

(3.18 ) 

(3.19) 

In the first case, although there are quite a few possible lead­
ing behaviors to be studied one by one, it turns out that for all 
of them, both the leading exponents and the resonances are 
all integers. For the two other there is at least one wrong 
leading behavior. 
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For dOA = 6, there is a leading behavior where F-zx2, 
G-zxq

, q> 2. Indeed this does satisfy the lowest-order term 
of the A equation, because 

(3.20) 

and G only appears at higher orders. The B equation in 
(2.10) now leads to an equation for q that is 

q2-5q+2=0, (3.21) 

if daB = 2, and 

q(q - l)(q2 - 13q + 34) = 0, (3.22) 

if dOB = 4. Both of these equations have one irrational root 
larger than 2, corresponding to a non-Painleve type leading 
behavior. 

We are left with only the case dOB = 2, dOA = 4, for 
which, as we will see, there are indeed integrable subcases, 
and the three possibilities of ( 3.18) where this is also true for 
the reason stated above. This concludes the analysis of the 
SG type at this point. 

D. The leading part for the MKdV type equations 

We now turn to the MKdV type equations. We have 
dOA = 2, 4, 6 but we do not have any limitation on dOB yet. 
(However, we never consider the case daB = 1, as it is too 
trivial. In fact, theequationDxF'G = Ojustmeans thatF /G 
does not depend on x.) Because B is odd, under the change 
F' = F + G, G' = F - G the B equation remains 

B F'·G' = 0, (3.23) 

while the A equation becomes 

A F'·G'=O. (3.24) 

We will use (2.10) or (3.24) depending on the case at hand, 
dropping the primes. 

Let us first examine the case d °A = 2. In the form (3.24) 
the leading behaviors of F and G are F-zxn(n - 1)12, 

G-zxn(n + 1)12 with integer n. For dOB = 3 the only choices 
are n = 0 and 1 which lead to integer resonances. As soon as 
dOB = 2k + 1>5 one can taken = 2in which case the reson­
ances are: - 3, - 1, 0 (double), 1, ... ,2k - 4, plus 4k - 2 
and the two roots of the equation 

r2 - (4k+ 1)r+ 8(k 2 - k -1) = 0 (3.25) 

with discriminant A = - 16k 2 + 40k + 33. For k = 2 we 
have A = 49 and for k = 3, A = 9 but for n>4, A is negative 
and the resonances are complex. This shows that for d °B> 9 
the system does not have the Painleve property. We have 
checked that for dOB = 5 and 7 all the other leading beha­
viors have integer resonances only. 

Let us now turn to dOA = 4. We use Eq. (2.10) and 
choose F-zxI, G-zx4 which is indeed a possibility whenever 
dOB>7. Then Gis subdominant in theA equation and G·G 
enters with an arbitrary coefficient exactly at resonance 6. 
Because of this arbitrariness, the resonance condition will 
not always be satisfied and therefore the Painleve property 
does not hold for d °B > 5. For d °B = 5, the leading behavior 
F-zxo, G-zx3 has resonances - 3, - 2, - 1, 0 (double), 1, 
6 and the irrational roots of r2 - 15r + 32, so it does not 
have the Painleve property either. We have checked that for 
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daB = 3 all dominant behaviors lead to integer resonances. 
The d °A = 6 case is treated along the same lines. A lead­

ingbehavior F,;:::;x l
, G,;:::;x6 is possible whenever d °B;>9 while 

the resonance condition at resonance 10 cannot always be 
satisfied. For daB = 3 there are only integer resonances 
throughout. For daB = 5 (F,;:::;xO,G,;:::;x4

) and daB = 7 
(F,;:::;xO,G,;:::;x5 ) we find irrational resonances. 

Summarizing, the only candidates for the Painleve 
property are 

dOA = 2, daB = 3,5,7, 

dOA = 4, daB = 3, (3.26) 

dOA = 6, daB = 3. 

As a matter of fact we will see in the next chapter that there 
exist at least one example of an integrable PDE for each of 
these choices. 

E. The leading part tor the NLS type equations 

Finally, we consider the NLS type systems. As far as 
singularity analysis is concerned G * must be considered as a 
new variable H independent from G, as the singularity mani­
fold need not be real. On the other hand, the highest degree 
monomial of B has a definite parity, and thus at that order 
one can take B * = ± B. Thus at highest order we can re­
write the NLS type equation as 

D 2PF'F= GH, DqF'G=O, DqF·H=O. (3.27) 

Again, we have 2p = 2, 4, 6 but q may be even or odd. 
We begin with 2p = 2. Then for all q(>2) there is al­

ways a leading behavior of the formF,;:::;x, G,;:::;a, H,;:::; - 21a, 
the resonances of which are - 1, {O, ... ,q - 2} (all double), 
2q - 1 and the two roots of 

r2-r(2q+ 1) +4q-2-2( -1)q=O. (3.28) 

Consider now the discriminant of this equation. For q even, 
it is 4~ - 12q + 17. This odd number is equal to 
(2q - 3) 2 + 8. In order for it to be a perfect square it must be 
equal to (2q - 1) 2 and this is the case for q = 2 only. For q 
odd, the discriminant is 4q2 - 12q + 1 = (2q - 3)2 - 8, 
which, to be a perfect square can only be (2q - 5) 2 and thus 
q must be 3. Summarizing, in order for all the resonances for 
this particular leading behavior to be integer, it is necessary 
that q be either 2 or 3. We have checked that for these two 
values, all the other leading behaviors are also of Painleve 
type, having integer resonances only. 

ThecasedoA = 4 is easier. WestartwithF,;:::;x,andnote 
that for q;>4, one can take G, H ,;:::;x2 with arbitrary coeffi­
cients. Then, the quantity GH on the rhs of the A equation 
enters exactly at order 6, which is a resonance. Because this 
term is arbitrary, the resonance condition cannot always be 
satisfied. Thus the Painleve property is violated for q;>4. On 
the other hand for q = 2, 3 all leading behaviors lead to in­
teger resonances. 

A similar argument can be used for d °A = 6. Taking 
again F,;:::;x, but now with G, H,;:::;x3 in order for the rhs to 
enter at resonance 10. This will be possible whenever q>5, 
and also happens to be a solution for q = 2. Only q = 3,4 are 
not excluded by this argument, but q = 4 has a non-Painleve 
leading behavior F,;:::;x2

, G, H ,;:::;xs with irrational s satisfying 
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~ - 13s + 34 = O. Finally, q = 3 has noninteger leading be­
haviors F,;:::;X IO/3, G,;:::;xIl3, H ,;:::;x l13

, and F';:::;X28/3, G';:::;XIO/3, 
H';:::;X28/3 (and F';:::;X28/3, G';:::;X28/3, H';:::;XI0/3 ). In summary, 
no NLS case with 2p = 6 can have the Painleve property. 

So the only Painleve candidates for NLS type equations 
are 

dOA = 2, dOB( = daB *) = 2,3, 

dOA=4, dOB(=dOB*) =2,3. 
(3.29) 

F.Summary 

At this point, having used only the constraints from the 
integer character of the leading exponents and resonances 
(plus some very general arguments on the resonance condi­
tions) we have narrowed down our investigation of possible 
Painleve cases to the following: 

KdV type, dOA = 2,4,6; 

SG type, dOA = daB = 2,4,6, 

dOA =4, dOB=2; 

MKdV type, dOA = 2, daB = 3,5,7, 

dOA=4, dOB=3, 

dOA = 6,' daB = 3, 

NLS type, dOA = 2, dOB( = daB *) = 2,3 

dOA = 4, dOB( = daB *) = 2,3. 

IV. BILINEAR EQUATIONS HAVING THE PAINLEVE 
PROPERTY 

Before proceeding to a systematic examination of the 
equations presented in Ref. 4 and which possess soliton solu­
tions a remark is in order. Once the general form of an even 
polynomial A for KdV -type equation which passes the Pain­
leve test is found this helps limit the search for the other 
types. In fact, as G (and G *) can be taken equal to zero, only 
those A's given by the KdV-type can be acceptable. 

We also note that there are various transformations that 
change the form of the bilinear equations but not the exis­
tence of N-soliton solutions or the Painleve property. These 
include linear transformations between dependent and inde­
pendent variables, which we will freely use in the following. 
There is also the so-called "gauge transformation" (F, G, 
G *) -exp(~) (F, G, G *) which has no effect if ~ is linear in 
the independent variables. If ~ is quadratic then the bilinear 
form changes and the transformation make take us also out­
side of the form assumed in Ref. 4 for N-soliton solutions. 
However, such transformations do not change the Painleve 

TABLE I. KdV -type equations. 

A F Resonances 

X4+XT+ y2 x, - 1,0, 1,6 
XJT+YT+X2 x, -1,0,1,6 
X· +XT3 + aX 2 + bXT+ CT2 x, -1,0, 1,6 
X·+5X 3T-5T2+XY Xl - 1,0, 1,2, 3, 10 

xl - 2, - 1,0, 1,5, 12 
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TABLE II. SO-type equations. In the first (resp. second) equation the con­
stant a may be removed through the gauge transformation F 
-exp( - axy/2)F[resp. F-exp( - ayt /2)F] unlessyis proportionalto t 
(resp.x). In Ref. 4, the formA = X-'T + 3bX 2 + YT,B = XT + bwasgiv­
en. However, the constant b can be removed through the gauge transforma­
tion F-exp( - bxt/2)F and this form reduces to the second equation 
above. In addition all equations with A = B where A is included in the list of 
the KdV acceptable equations automatically satisfy the Painleve criterion. 
We did not find any Painleve case with A ¥-B for dOA = dOB = 4 or 6. 

A,B 

XT,XY+a 
XT,X 3T+ YT+a 

F,G Resonances 

-I,a, a, 1 
- 1, a, a, 1,2, 3 
- 3, - I, a, a, 1,6 

property, so we will use them to reduce the number of equa­
tions to check. 

So, let us start with the KdV -type equations. For 
d °A = 2 there are no constraints: written in the usual form 
the equation is linear. For dOA = 4 we have shown that the 
most general homogeneous form which can have the Painle­
ve property involves at most two independent variables. If 
we write the condition at the resonance r = 6 for 

(coDx 4 + ctD/Dt + c2Dx 2D/ 

+ c3DxD, 3 + C4Dt 4)F' F = 0, (4.1 ) 

we find C2
2 

- 3c t c3 + 12coc4 = O. Thus through a rotation 
in the x-t plane this can be rewritten as 

Dx(aD/+bD/)F-F=O. (4.2) 

Now we can consider the quadratic and constant terms that 
can be added to the above homogeneous form. In fact, de­
pending on whether a, b vanish or not, Painleve analysis (at 
the resonance condition step) shows that there are essential­
ly three different possibilities: 

(Dx 4+ Dx D, +D/+c)F'F=O, (4.3) 

(4.4 ) 

(Dx 4 + DxD/ + ADx 2 + f-lDxDt + vD/ + c)F'F= 0, 
(4.5) 

TABLE III. MKdV-type equations. 

A,B 

XT,XTY+X+ T 
XT,X-'+ T3+ Y 
X2,X'+X2T+ Y 

X 2,x' +X' +X2T+ Y 
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F,G 

X',x' 
X',x' 
XO,XI 

XI,XJ 

XO,x l 

x',x3 

xJ,x6 

xD,x' 
XI,X' 

XO,x2 

xO,x' 
XI,XI 

xO,X> 
x2,X> 
X

2
,X

7 

where in (4.4) we have exchanged x and t from (4.2) in 
order to write it in a more familiar form. 

For d °A = 6, Painleve analysis shows that there is only 
one possibility for the homogeneous term, which must be 
exactly Dx 6, and the general nonhomogeneous form is 

In all these equations, the constant c can be removed by 
a "gauge transformation" ofF, which in this case consists in 
multiplying Fby the exponential of a quadratic polynomial 
in the independent variables. Such a transformation only 
adds a constant to the "usual" variable ax 2 log F. Since it is 
precisely in the gauge where c vanishes that the one-soliton 
solution has the usual form (2.5), we will always take c = 0 
from now on. 

Equation (4.3) is the Kadomtsev-Petviashvili (KP) 
equation (and contains the Boussinesq and KdV equations), 
(4.4) is known as the Ito equation, (4.5) was first given in 
Ref. 4, while (4.6) is a combination of the Sawada-Kotera 
equation and of an equation given by one of us (AR) in Ref. 
3. Equations (4.2 )-( 4.6) are precisely those identified in 
Ref. 4 as having at least four-soliton solutions. In fact, (4.2), 
(4.3), and (4.6) are well-known integrable equations be­
longing to the KP hierarchy of the Kyoto group.2 

We summarize our findings on the four classes of equa­
tions (2.9)-(2.11) in Tables I-IV. In order to simplify the 
notations, we will write, following Ref. 4, X instead of D x' T 
instead of D" etc. For all cases, we give the leading expo­
nents, as well as the corresponding resonances. The reso­
nance conditions have been verified using the REDUCE9 sym­
bolic manipUlation language. We must stress the fact that for 
the equations of the last three types our investigation was not 
the most general one (and even so, this turned out to be a 
formidable task, straining the available computer memory to 
its limits): we have analyzed essentially equations identified 
in Ref. 4 as having multisoliton solutions. We did try some 
modifications and generalizations of them but in all cases the 
Painleve analysis forced us back to the precise form obtained 
in Ref. 4. 

Resonances 

- I, a, a, 3,4 
- I, a, a, 3, 4 
- 1, a, a, 1,2,3,6 
- 3, - I, a, a, I, 6, 8 
- I, a, a, I, 2, 3,4,5,8 
- 3, - I, a, a, 1,2, 5, 8, 10 
- 5, - 3, - I, a, a, I, 8, 10, 12 
- 1, a, a, I, 1,2,6 
- 1, - 1, a, a, 1,4,6 
- 2, - I, 0, a, 1, 3, 8 
- I, a, a, 1, 1,2,3,4,8 
- 1, - I, a, a, 1,2,3,4,10 
- 2, - I, a, a, 1,2,3,7,8 
- 2, - 2, - 1, a, a, 1,5,5, 12 
- 7, - 5, - I, a, a, 1, 8, 10, 12 
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TABLE IV. NLS-type equations. 

A,B 

X 2,xT+iY+a 
XT,X 2 + T2 + iY +a 
X 2,iX 3 +XT+iY+a 

X 4 + XY - 3 T 2,X2 + iT + a 

X4+XY_3T2+kX2, 
iX 3 

- 3XT- iY/2 + a 

X 3T + aX 2 + bXT + cT2, 
iX 3 + 3dX2 + i(b - 3d 2)X - 2icT + e 

v. DISCUSSION 

F,G,G· 

x',X',X' 
x',X',xo 
x',X',X' 
x2,xI,X' 
x',X',xo 
X3,Xi,Xi 

x',X',xo 
xI,X',xo 
XS,XS,x l 

x',xo,X' 
x2,XO,X' 
X

S
,XS,x1 

Tables I-IV summarize our knowledge on bilinear 
equations that possess a minimum of four-soliton solutions 
and at the same time have the Painleve property. In fact, all 
the PDEs identified in Ref. 4 through the existence of nontri­
vial multisoliton solutions also satisfy the Painleve criterion 
(unless all their soliton solutions are trivial). The situation is 
less clear concerning the ODEs obtained in Ref. 4. In fact, 
quite a few of them do not pass the Painleve test. Thus the 
existence of localized solitonlike solutions for ODEs, or of 
solely trivial soliton solutions for PDEs, does not appear to 
be intimately related to integrability. 

One type of bilinear equations could not be treated by 
our Painleve algorithm: namely, the equations of the form 

DxDy(F'F-G'G) =0, DzDt F·G=O. (5.1) 

If both y and z differ from both x and t, then no multisoliton 
solution exists, but the Painleve criterion is automatically 
satisfied, because there are no positive resonances. 

Moreover, a whole class of equations, namely the B-O 
type, B F'F* = 0(2.12), is outside the range of the present 
treatment. The difficulty does not arise from the fact that 
they are integrodifferential equations, when written under 
their usual nonlinear form. Indeed, we have shown in Ref. 10 
that the ARS algorithm can be applied to the B-O equation 
itself, which does pass the Painleve test. Moreover, one can 
also test other similar nonlinear equations (involving the 
Hilbert transform) and show that they do not pass the test. 
However, whenever they can be written under bilinear form, 
the equations of this family trivially pass the test. Keeping in 
mind that, for singularity analysis purposes, F and F * must 
be considered as independent functions, one has only one 
equation for two unknowns. The usual procedure is to ana­
lyze which singularities F, say, can have when F* is consid­
ered as known (and arbitrary). For a nonlinear equation, 
this is already nontrivial. But since Eq. (2.12) is now linear 
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Resonances 

- 1,0,0,3,4 
-1,0,0,3,4 
- 1,0,0, 1, 1, 3,4, 5 
- 1,0,0, 1,2,4, 5, 6 
- 1,0,0,0, 1, 3, 3,6 
- 3, - 1,0,0, 1, 5, 6, 8 
- 1,0,0,0, 1, 1, 1,5,5,6 
- 2, - 1,0,0, 1,2, 3, 6, 7, 8 
- 5, - 4, - 1,0,0, 1,6,7,8, 12 
- 1,0,0,0, 1, 1, 1, 5, 5, 6 
- 2, - 1,0,0, 1,2,3,6,7,8 
- 5, - 4, - 1,0,0, 1,6,7, 8, 12 

in F, there are no movable singularities at all, and the Painle­
ve property is trivially satisfied. 

We believe that the equations given in Tables I-IV are 
excellent candidates for integrability (and the integrable 
character of many of them is already established). The com­
bination of two powerful integrability criteria allows us to 
make this statement with a high degree of confidence. Of 
course, .t~e ultimate proof of integrability will be given only 
by obtammg the Lax pair, for those cases where it is not yet 
known. Although this can be done in the Hirota bilinear 
formalism, it remains a formidable task. 

The extension of our method to more complicated bilin­
ear systems is straightforward: it suffices to add more com­
ponents to the systems and classify the new equations ac­
cording to the rules we have already set. This method is one 
of the most promising for finding new integrable PDEs in 
higher dimensions. 
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The possibility of expressing the solution to a t/J2P quantum field theory as a series in powers of 
1/ P is proposed. Such a series would be nonperturbative in its dependence on the fundamental 
parameters of the theory such as the mass and the coupling constant. The first term in such a 
series describes a field in an infinite-dimensional square-well potential. In this paper, the 
quantum-mechanical Hamiltonian H = p2 + q2P is studied as a model calculation and the 
expansion of the energy levels as series in powers of I/Pis examined. The method of matched 
asymptotic expansions to determine the first five terms in the series for all energy levels is used. 
The results are compared with extensive numerical calculations of the ground-state energy and 
it is found that the series is extremely accurate: When P = 2, the five-term series has a relative 
error of 6%, when P = 10 the relative error is 0.009%, and when P = 200 the relative error is 
3.4X 10- 9 %. 

I. INTRODUCTION 

There have been many attempts to obtain nonperturba­
tive approximations to quantum systems. Such approxima­
tions have a clear advantage in that they do not express the 
content of the theory as series in powers of a physical param­
eter such as a coupling constant. Thus a nonperturbative 
approximation may reveal the true dependence of the struc­
ture of the theory on the physical parameters. Standarqmon­
perturbative approaches include the 1/ N expansion in which 
the field t/J has N components and the Lagrangian has O(N) 
symmetry, mean-field, and random-phase approximations, 
and € expansions. More recently, a nonperturbative expan­
sion called the {j expansion 1 was proposed in which a t/J4 field 
theory is approximated by a (t/J2) 1 + /j theory. In this ap­
proach, the Green's functions for a( t/J2) 1 + /j field theory are 
expanded as series in powers of {j assuming that {j ~ 1. Then {j 
is allowed to tend to I to obtain the solution to a t/J4 theory. 
Note that in this approximation scheme one is expanding 
about a free-field theory because (t/J2) 1 + /j becomes a mass 
term in the Lagrangian when {j = O. 

In the present paper we propose the possibility of solv­
ing a t/J4 quantum theory by expanding the solution to a t/J2P 

theory as a series in powers of 1/ P for P large. Note that the 
1/ Pseries is not an expansion about a free-field theory. Rath­
er, the leading term in the 1/P series corresponds to a free 
field confined to an infinite-dimensional square well.2 Of 
course, it is not clear a priori whether such an expansion will 
be numerically accurate. Furthermore, it is not at all obvious 
how to calculate such an expansion term by term because 
when P = 00 the field is completely confined to a finite do­
main while for P finite there is no such confinement. In other 
words, the leading term in a 1/ P series is relatively easy to 
calculate but subsequent terms may be extremely hard to 
find. 

The purpose of this paper is to illustrate the computa­
tion of higher-order terms in the 1/ P series for a simple 
quantum-mechanical model. We consider the Schrodinger 
equation 

[ -::2 + x 2P 
- E(P) ]'I1(X) = 0 (1.1 ) 

accompanied by the boundary condition 

'11 ( ± (0) = O. ( 1.2) 

We seek an expansion of the eigenvalue E(P) as a series in 
powers of 1/ P. To leading order we simply set P = 00. This 
gives the differential equation 

[- :;2-E(00)]'I1o(X) =0 (1.3) 

subject to the square-well boundary condition 

'11( ± 1) = o. (1.4) 

Note that the limit P-- 00 is a singular limit because, as P 
becomes infinite, the boundary conditions undergo an 
abrupt change that reflects the confinement of the wave 
function to a square-well potential. The eigenvalues of the 
Schrodinger-equation problem (1.3 )-( 1.4) are 

( 1.5) 

where n labels the energy level. 
The result in ( 1.5) is the leading term of a series in pow­

ers of 1/ P. However, because the perturbation series in pow­
ers of 1/ P is a singular perturbation series, it is not easy to 
guess the form that such a perturbation series takes. We will 
see that the eigenvalues have series expansions in powers of 
1/ P and that the coefficient of P - k is a polynomial 
Qn [In (2P) ] of degree k in In (2P). Specifically, we will show 
that 

En (P) =..!.. r(n + 1)2 + f P - kQdln(P)]. (1.6) 
4 k=1 

The series in (1.6) exhibits some remarkable features. 
First, the quantity In(2P) always appears in the combina­
tion r -In(2P), where r is Euler's constant, r = - r'( I) 
= 0.557 215664901... . Second, we can completely factor 

out the dependence of the series on the term r-ln(2P) by 
writing (1. 6) in the form 

En (P) = !r(n + I )2(2P) - 2I(P+ I) 
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where the coefficients Ak (n) are numbers that can be ex- 1 0 6 E"O-.---.-.,-----r-,-,-.---.-,.---r-,-,-.---.-,.---r-,-,~ 

pressed in terms of the Riemann zeta function: 

Ao(n) = 1, 

A1(n) =0, 10 4 

A 2 (n) = - 1 - !t(2), ( 1.8) 

A3 (n) =~+S(2) -~(3) -Hlr(n+ 1)2]S(3), 

A4 (n) = -~-S(2) +~(3) +M(4) 

+ [!r(n + 1)2] [s(3) + ~(4) l 
The most efficient way to extract accurate numerical 

predictions from ( 1. 7) is to convert the series l'. kA k (n) P - k 

in (1.7) to a Pade approximant. We find that the diagonal 
series of Pade approximants P? ,P : ,P ~ ,P ~ , ... gives the best 
numerical results [in our case, the vanishing of A 1 (n) pre­
vents us from constructing the first two terms P? and P: in 
the diagonal Pade sequence]. 

To demonstrate the accuracy of the 1/ P expansion in 
( 1.7) we have calculated numerically the ground-state ener­
gy Eo(P) for 60 values of Pin the range ~<P<35()(). In Table 
I, we compare the numerical results for Eo(P) with the series 
in (1.6) for some values of P. Observe that the relative error 
vanishes with increasing P like P - 5. In Figs. 1-4 we plot the 
relative error in various Pade approximants to the 1/ P series 
in (1. 7) as functions of P. The derivation of the series in 
( 1.6) using the method of matched asymptotic expansions is 
given in Sec. II. 

The accuracy of the 1/ P expansion suggests that one 
should explore the connection between the 1/ P expansion in 
this paper and the {j expansion in Ref. 1. The connection 
between these two expansions is easy to establish: Let K be 
the highest power of 1/ P in the sum in (1. 7). Setting 
P = 1 + {j in (1. 7) and expanding the result as a series in 
powers of {j gives for each value of K an expression for the 
coefficients of each power of {j. As K increases we might 
expect that the coefficients of each power of {j stabilize and 
become equal to the coefficients in Ref. 1. If this stabilization 
actually occurs, it must do so in very high order. The coeffi­
cient of [jO is 1 for the ground-state energy. The first five 
approximations to this number obtained as described above 
are 

TABLE I. A comparison of the exact values of Eo(P) obtained numerically 
with the predicted values obtained from (1.7) by converting the series 
l:kAk (O)P - k to a (2,2)-Pade for selected values of P. Observe that the 

relative error decreases like P - 5 as Pincreases. However, beyond P = 200 
we no longer list the error because the computed eigenvalues are only cor­
rect to 11 decimal places. 

P 

2 
4 
5 

10 
50 

200 
500 

1500 
3500 

2580 

Eo(P)e .. ct 

1.060 362 090 5 
1.225 820 114 1 
1.298 843 700 6 
1.560 508 342 9 
2.105213 7740 
2.337 875 108 9 
2.405 807 979 2 
2.443 094 773 6 
2.455762241 3 

Eo (P) predicted 

1.1218616366 
1.231 6893749 
1.301 3735128 
1.560 657 204 6 
2.1052138664 
2.337875 109 0 
2.405 807 979 2 
2.443 094 773 6 
2.455762241 3 

Relative error 

5.8% 
0.48% 
0.19% 
0.0095% 

4.3XIO- 6 % 
3.4XIO- 9 % 
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10 - 2 '---'--L--L-..L--'---'---'-- ..L-.L...l--'--'--'-..L-.'--'--L-'----L-l 

o 5 10 
2P 

15 20 

FIG. 1. A plot of the absolute value of the relative error between the exact 
value of Eo(P) and the predictions for Eo(P) obtained from (1.7) by form­
ing the (3,0), (2,1), (1,2), and (0,3) Pade approximants to the series 
l:i ~ oAk (O)P - k for 1.;;2P.;;20. 

1 (K=O), 

(K = 1), 

0.834411 (K= 2), ( 1.9) 

1.381265 (K = 3), 

1.348792 (K = 4), 

which, if they approach 1 do so rather slowly. From these 
results we are inclined to believe that the {j expansion and the 
1/ P expansion do not have a large common region of valid­
ity. 

10-2 

lip 
10- 1 

FIG. 2. Same as Fig. 1 for 0.0025.;; 1I(2P).;;0. 1. The straight-line behavior 
of the curves in the graph imply that the error is of order P - 4. 
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106 

104 

~ 
~ 

10 2 

100 

10-2 

0 5 10 15 20 
2P 

FIG. 3. A plot of the absolute value of the relative error between the exact 
value of E(P) and the predictions for E(P) obtained from ( 1. 7) by forming 
the (4,0), (3,1), (2,2), (1,3), and (0,4) Pade approximants to the series 
1:1_ oAdO)P - k for I <2P<20. 

II. DERIVATION OF THE 1/PSERIES USING THE 
METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 

In this section we show how to solve the eigenvalue dif­
ferential equation in ( 1.1 )-( 1.2) for large P using the meth­
od of matched asymptotic expansions. Let us summarize the 
analysis briefly: We decompose the domain O<;x < 00 into 
three regions. In region 1, whereO<;x< 1, we can neglect the 
exponentially small term x 2P in the differential equation. Re­
gion 2 consists of the neighborhood of x = 1. We will specify 
the size of this region carefully later on. In region 3, where 
x> 1, we neglect the term E because it is small compared to 
x 2P, which is exponentially large. 

In region 1 the differential equation is trivial because it is 

10-2 

t 10-4 

~ 

10-6 

0.005 0.01 0.02 0.05 0.1 
liP 

FIG. 4. Same as Fig. 3 for 0.0025< 1I(2P) <0. 1. The straight-line behavior 
of the curves in the graph imply that the error is of order P -'. 
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a constant-coefficient equation. Even-parity eigenvalues are 
determined by the requirement that the derivative of the 
wave function vanish at x = 0, and odd-parity eigenvalues 
are determined by requiring that the wave function vanish at 
x = O. The boundary condition that the wave function van­
ish at x = 00 imposed in region 3. We will solve the differen­
tial equation in each of the three regions, impose the bound­
ary conditions at x = 0 and x = 00, and require that the 
wave function satisfy asymptotic matching conditions at the 
boundaries of regions 1 and 2 and regions 2 and 3. This 
matching constraint determines the eigenvalues. Specifical­
ly, if we carry out an asymptotic match to k th order in pow­
ers of liP, we determine the eigenvalues En (P) correct to 
P -k. 

We begin our analysis by introducing a new indepen­
dent variable: 

t=E- 1I(2P)X, 'I'(x)=y(t). 

Then (1.1) reads 

y"(t) + (~/4)j2(1- t 2P)y(t) = 0, 

where 

(2.1) 

(2.2) 

j=~E1I2+1I2P=fo+h-.!.+h_l_+ .... (2.3) 
11" P p 2 

A. Analysis of region 1 

Since region 1 consists of those t for which t 2P is expon­
entially small compared with 1, then yC 1), the wave function 
in region 1, satisfies 

yCI)"(t) +!~j2yO)(t) =0. (2.4) 

The solution to this equation whose derivative vanishes at 
the origin is 

yO)t =A cos [ (11"12)fi], (2.5a) 

and the solution that vanishes at the origin is 

yO)t = A sin[ (11"12)fi ], (2.5b) 

where A is a constant to be determined by asymptotic match­
ing. Even-parity eigenvalues will come from matching to 
(2.5a) and odd-parity eigenvalues will come from matching 
to (2.5b). 

B. Analysis of region 3 

Region 3 consists of those t for which t 2P is exponential­
ly large compared with 1. Thus y(3), the wave function in 
region 3, satisfies 

y(3)"(t) _!~Pt2Py(3)(t) =0. (2.6) 

A simple transformation converts this equation to a modi­
fied Bessel equation. The solution to (2.6) satisfying the 
boundary condition y( 00 ) = 0, is 

y(3)(t) = Ct 1I2K1I2(p+ 1) {[11"jI2(P+ 1)]t 1 +P}, 
(2.7) 

where C is a constant to be determined by asymptotic match­
ing. 
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C. Analysis of region 2 

Region 2 is the neighborhood of t = 1. A convenient 
variable for the treatment of region 2 is 

8=t-1. (2.8) 

In terms of 8 (2.2) becomes 

y<2)" (8) + !~/2 [1 _ e2Pln (1 + c5) ]y(2) (8) = o. 
We take 8<t,1 and expand In( 1 + 8) in (2.9): 

y(2)" (8) + i~/2[ 1 _ e2Pc5e - Pc5'e2Pc5'/3e - P8'/2 ... ] 

Xy<2) (8) = 0 . 

(2.9) 

(2.10) 

Region 2 consists of those 8 that are small compared with 1. 
However, in order that overlap regions exist between regions 
1 and 2 and regions 2 and 3 where we will perform the 
asymptotic matching, it is necessary that 8 must not be too 
small or else t 2P will not be exponentially small in region 1 
and not be exponentially large in region 3. As we will see, it is 
sufficient to take 

(2.11a) 

to obtain the leading-order (first-order) asymptotic match, 

1/P<t,8<t,1/P 3/4 (2.11b) 

to obtain the second-order asymptotic match, 

1/ P<t,8<t,1/p 5/6 (2.11c) 

to obtain the third-order asymptotic match, and so on. As we 
calculate to successively higher orders in powers of 1/ P, 
these asymptotic inequalities provide a self-consistent de­
scription of the extent of the matching (overlap) regions. 
Observe that as the order of perturbation theory increases, 
the size of the overlap regions shrinks. This is a well-known 
and necessary feature of all calculations involving matched 
asymptotic expansions.3 

To obtain solutions to (2.10) to any orderin 1/Pofthe 
form 

1 1 1 
Y(2) =y(2) +_y(2) +_y(2) +_y(2) + '" 

o P I p2 2 p 3 3 , 

we make the key change of variables 

b = trfo/2P, s = bePc5, 

(2.12) 

(2.13 ) 

wherefo is the leading term in the expansion of/in (2.3) and 
b is a small parameter of order 1/ P. With a little algebra it is 
easy to obtain 

with 
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and 

O'n•m = 2m L 
~ai=m 

(2.14 ) 
a l !a2 !" ·an !2U '3 u, ..• (n + 1)a" 

and 

( 1)2 [00 (l)i I" ]2 00 (1 )i{ i I" I" } 
- = L - -!.!... = L - L!..0...:!L· 
fo i=O P fo i=O P j=O fo 10 

Then (2.10) for all n = 0,1,2, ... reads 

d d s-s-y(2)(S) - a. ~y(2)(S) 
ds ds n 0,0 n 

where 0'0,0 = 1. We will see later that 

y~2)(S) = O. 

(2.15 ) 

(2.16 ) 

(2.17) 

To first order in 1/P, (2.16) is a homogeneous modified 
Bessel equation of order 0: 

S2y \2),,(S) + sy\2),(S) - ~y\2)(S) = O. (2.18) 

Its general solution is 

(2.19) 

where we have exercised our freedom to choose the overall 
constant in the solution to a homogeneous linear equation by 
setting the coefficient of the Ko function equal to 1. This 
choice will determine the multiplicative constants of the so­
lutions in regions 1 and 3 when we perform the asymptotic 
matching. 

By virtue of the asymptotic inequalities in (2.11 ), which 
now have the form 

1 <t,ln (s/ b) <t, P 112 (leading order), 

l<t,ln (s/b) <t,p 1I4 (second order), 

(2.20a) 

(2.20b) 

l<t,ln (s/b) <t,p 1I6 (third order), (2.20c) 
and so on, we see that to second order in powers of 1/ P, 
(2.16) now reads 

s2yi2),,(s) + sy?)'(s) - ~y?)(s) 

= S2y \2)(S) [2~ - 2ln2(;)] . (2.21) 

Unlike the leading-order equation in (2.18) this linear dif­
ferential equation is inhomogeneous. Using the method of 
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reduction of order we can write down a formal solution to 
(2.21): 

To third order in powers of liP (2.16) gives 

is 1 l"" Y(2)(S) =y(2)(S) dx dz zK (Z)y(2)(Z) 
3 I K ( )2 0 I 

b X 0 X x 

In every case we choose the limits of integration such that 
the first term vanishes for s = b, the center of region 2, and 
for s = 00. This choice will simplify subsequent calculations. 

This expansion process can be carried out to any order 
in powers of liP. Note that in (2.23)-(2.24), the 
[ Trio (2P) ] 2 term in (2.16) contributes for the first time. 

D. Matching of regions 2 and 3 

The overlap of region 2 and region 3 consists of all 8 > ° 
satisfying (2.11a). The positivity of 8 implies that the argu­
ments ofy<2)(s) andy<3)(s) are exponentially large. Thus, 
the solutions must be asymptotically matched for large argu­
ments of the relevant modified Bessel functions. Besides de­
termining the constant C in (2.7), this match gives the cru­
cial result that to every order in liP the exponentially 
growing contributions tOYl2)(S),yi2)(S),y~2)(S), ... coming 
from lo(s) must be eliminated. Thus BI = 0, B2 = 0, ... 

Since, as we will see, y~/) = 0, the leading-order term in 
C must be of order liP. In the overlap region we have 

y<3)(S)-c.J¥;e- s
[ 1 + o(~) + 0(+)], (2.25) 

+ ~ ~/~YI2)(s) +s2Yi2)(S)[2~ -21n2
(;)], 

whose formal solution is 

and in the same overlap region we have 

y(2)(S)_ ~Yl2)(S) +0(;2) 

(2.23) 

(2.24) 

(2.25) 

Aside from the crucial result that Bk = ° for any order k in 
liP, the asymptotic match between solutions in regions 2 
and 3 provides no further information. From this knowledge 
we can now determine the precise form of yi2

) (s) in (2.22): 

yf)(s} = KO(S}[a2 + ~ In(;)] 

+ sKI (s) [ 1 - ~ - In( ;) + ~ In
2
(;)] , 

with 

a2 = (J./fo - l)bK I (b)IKo(b), (2.27) 

where we have evaluated all ofthe indicated integrals. Simi­
larly, we can simplify the expressions for y~2) (s) andy~2) (s): 

(2) {K [ 1 1 (S) 1 1 2( S )] K {I I~ 1 12 (II ) Y3 (s) = o(s) a3 +-a2 n - -- n - +s I(S) --2 ----- --1 a2 
2 b 8 b 2 10 2 10 10 

2583 

+ [~(1-~)-02]ln(;)+ ~ 021n2(;)--&ln3(;)} +~Ko(S}{~(~ -lr +(~ -l)tn(;) 

+ (1 - + ~) In2
(;) - ~ In

3
(;) + ! In4

(;)} 

+- (~/~ -1) lo(s) dx-K~(x) + Ko(s} dx-Ko(x}/o(x) , 1 [1"" 1 is 1 ] 
4 s X b X 

(2.28) 
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( 5 1 II 1 )1 4( S ) 7 1 5( S ) 1 1 6( S )} + --+--+-a2 n - +- n - -- n -
12 4 10 8 b 48 b 24 b 

+~KI(S){ - !(lo -It -+(lo -1)\n(;) 
+ (~ _ II + ~ Ii )ln2(!....) + (~/I _ ~)ln3(!....) 

4 10 4/~ b 2/03 b 

+ (~ _ ~ II )ln4(!....) _ J.-1n5(!....) + _1 1n6(!....)} 
8 8 10 b 8 b 48 b 

+ ~ (rlafl + ~ - a2)[Io(S) l"" dX~ K~ (x) + Ko(s) f dx ~ KO(X)Io(X)] 

+ ! (r/~ + 1) {Io(S) l"" dX~ K6(X)[a2 + ~ In(;)] 
+ Io(s) l"" dx Ko(x)KI (x) [ 1 -lo -In( ;) + ! In2

(;)] + Ko(s) f dx ~ Ko(x)Io(x) [a2 + ! In(;)] 
+ Ko(s) f dx Io(x)KI (x) [ 1 -lo -In(;) + ~ In2

(;) n. (2.30) 

with 

(2.31 ) 
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In principle, it is straightforward to obtainy~2) ,y~~~. in a simi­
lar fashion. Ultimately, however, one encounters difficult 
integrals of the form 

1"" 1 IX 1 dx-K~ (x) dz-Ko(z)Io(z), 
s x b Z 

(2.32) 

which make it difficult to express the expansion in terms of b 
ors. 

E. Matching of regions 1 and 2 

The constant A in (2.5) is a series in powers of liP 
beginning with (lIP)o. To obtain an asymptotic match here 
we replace the variable tin (2.5) by 1 + lIPln(s/b) and 
expand the result as a series in powers of liP. Using the fact 
that s is exponentially small (£5 < 0) and b is of order liP, we 
expand y~2)(S) = Ko(s) and (2.27)-(2.29). Demanding 
that the expansion of (2.5) agrees order-by-order with the 
expansion ofy<2) (s) in the overlap region gives a sequence of 
relations for the coefficient A and the eigenvalue E in terms 
off To leading order the condition on E is 

cos [ ( 17"/2 )10] = 0 

or 

sin [ (17"/2 )10] = 0 , 

for the infinite square well, confirming that 

y~2)(S) = 0, 

which gives a discrete spectrum 

10 = n + 1, n = 0,1,2, .... 

(2.33a) 

(2.33b) 

(2.34) 

(2.35) 

To higher order, the process of matching establishes equa­
tions between coefficients of powers of In(x/b). Solving 
these equations iteratively gives (1.6). In particular, we find 
that 
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QI = !,r(n + 1)2(2v), 

Q2 = !,r(n + 1)2(2v2 - 2v - 2), 

Q3 =~(n + 1)2{..!V3 - 4v2 - 2v + 3 +~t(3) 
4 3 3 

- [! ,r(n + 1)2] ~ t(3)}, 

Q4 = ~(n + 1)2{ ~ v4 - 4v3 + 2V2 + [8 + + t(3)]V 

-~-~t(3) + [~,r(n+ 1)2] 
3 2 4 

X [ - ~ vt(3) + 2t(3) +. ~ t(4) n ' (2.36) 

v = r -In(2P). 
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2We can express a ¢J2P quantum field theory as a functional integral 

Z [J 1 = f 1¥ exp{ - f dX[ + (a¢J)2 + ~ m2¢J2 + g¢J2P + J¢J]). 

Interpreting this functional integral as a finite product of Riemann inte­
grals on lattice gives 

Z [J 1 = f~ [II d¢J" ]exp{ - adI [.!. (a¢J,,)2 
_ ~ 1/ " 2 

Now, as P- 00 we have 

Z [J 1 = f + , [II d¢J" ]exp{ - adI [.!. (a¢Jn)2 
-I " II 2 

+ ~ m
2
¢J:' + J,,¢J,,]I 

and we see that the field at each lattice point n is restricted to lie in the range 
- 1 <¢J" < 1. Thus we have aJreefield theory confined to an infinite-dimen­

sional square well. 
3 Advanced Math Methods Jor Scientists and Engineers, e. M. Bender and S. 
A. Orszag (McGraw-Hili, New York, 1978), Sec. 7.4. 
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It is shown that the connection one-form on the prequantization line bundle that generates the 
correct energy spectrum for the modified Poschl-Teller potential consists of the canonical one­
form on the corresponding cotangent bundle, together with an adjustment term that arises 
from the Berry's connection. 

I. INTRODUCTION 

In studying the role of the connection one-form on the 
prequantization line bundle in the scheme of geometric 
quantization, I McKenna and Wan2 have shown that inequi­
valent choices of one-form will result in inequivalent Bohr­
Sommerfeld conditions. Here, one-forms 0) and 0)' on a sym­
plectic manifold M with fixed symplectic form 
n = dO) = dO)' are considered inequivalent if 0) - 0)' is non­
zero in H ~eRham (M). Thus, in the case where 
H ~eRham (M) :;60, i.e., if Mis multiply connected, the energy 
spectrum of a Hamiltonian will depend on the choice of one­
form 0). Among the examples in Ref. 2, they have shown that 
in quantizing the bounded state Poschl-Teller problem with 
Hamiltonian H(p,q) defined on the phase space JR2\0 with 
the usual symplectic two-form dp dq: 

H(p,q) = !(P2 - A.(...1. - 1 )/coshz q). (1) 

The correct spectrum En = - !(...1. - 1 - n)z will be ob­
tained by choosing the connection one-form: 

0) = pdq + (A. - 1 - {A. (A. - 1)}112)dc,h, (2) 

where c,h is the angle in the action-angle variable. 
It was discovered by Berry3 that a phase shift will result 

in the eigenfunctions to a parameter-dependent Hamilto­
nian as the parameters traverse adiabatically along a closed 
curve. Simon4 has recognized that this phase arises from a 
connection (Berry's connection) on the solution line bundle 
over the parameter space. Recent developments on the dy­
namical meaning of Berry's phase5

-
7 suggest that the curva­

ture of this connection can be interpreted as a symplectic 
form on the parameter space. Moreover, if the parameter 
space is itself a symplectic manifold (the parameters being 
the "slow" dynamical variables), this form acts as an adjust­
ment term8

•
9 in the geometric quantization process, when 

the collective motion is separated out. The phase shift along 
a closed curve r is computed by integrating the curvature 
over a cap surface of r, assuming the parameter space is 
simply connected (so Stokes' theorem applies). Thus em­
phasis has been placed on the curvature form ofthe bundle. 
Only recently, an example of a flat Berry's connection was 
studied, to there the Berry'S curvature is 0 since the param­
eter space is one dimensional (circle). 

The purpose of this paper is to show that Berry's con­
nection gives the extra term (A. - 1 - {...1.(...1. - l)}IIZ)dc,h in 
Eq. (2) by a separation of variables within an enlarged sys­
tem. We consider the geodesic flow on the one-sheeted hy­
perboloid in JR3, with natural SO(2, 1) symmetry. This Ham­
iltonian becomes Eq. (1) via the reduction procedure of 

Marsden and Weinstein, II where we see that the terms A. - 1 
and {A. (A. - I)} liZ are identified with the energy and angu­
lar momentum variables, i.e., the Casimir operators for the 
SO (2,1) and SO (2) groups. Our consideration here suggests 
that in the case where the variables are separable, so there is 
no adjustment term for the symplectic two-form on the pa­
rameter space, an adjustment by a (flat) connection one­
form still persists. 

In Sec. II we discuss the symmetry and reduction for the 
Poschl-Teller problem. It is shown that the reduced phase 
space has a one-form relevent to the discrete series represen­
tation of SO (2,1 ). We must emphasize that our work does 
not imply that there is always a natural choice of connection 
one-form which gives the correct spectrum. Our choice is 
dictated by the discrete series representation of the symme­
try group SO (2,1), which we discover in the enlarged sys­
tem. In Sec. III we show that the Berry's phase gives the 
adjustment term in Eq. (2). 

II. SYMMETRY AND REDUCTION 

The Hamiltonian H(p,q) in Eq. (1) can be recognized 
as the radial term in the geodesic flow problem on a one­
sheeted hyperboloid in JR3. Explicitly, let 

YI = r cosh a cos e, 
Y2 = r cosh a sin e, (3) 

Y3 = rsinh a. 

Denote by X = {yEJR31 [ y,y] = r Z = I} the one-sheeted hy­
perboloid, where [ , ] has signature + + -, then X is con­
veniently parametrized by (a,e) with aEJR and ()ES I. The 
group SO(2, 1) acts on X transitively. Let T* X denote the 
cotangent bundle on X, with canonical one-form 
Pa da + Pe de. We extend the group action to a Hamilto­
nian group action on T*X with momentum mapping l2 

J:T*X-+so*(2,1) given by 

( 

0 S12 
(Pa,Pe,a,e)-+ -S12 0 

S13 S23 

(4) 

SI2 = Pe, S13 = Pa cos e - Pe (sh a/ch a)sin e, 

S23 = Pa sin e + Pe (sh a/ch a)cos e. 
The Casimir operator is 

Si3 +S~3 -siz =p~ -pVch2 a=2H(Pa,Pe,a,e). (5) 

By setting P = Pa' q = a, Pe = {A. (A. - 1) }112 , we recover 
the Hamiltonian for the modified Poschl-Teller potential of 
McKenna et al. 
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Using the standard reduction procedure, II denote by 
& I' the coadjoint orbit of 

ft 
o 
o 

in so* (2,1 ), one checks that 

&1' = {Si2 -Si3 -S~3 =ft2}, (6) 

can be viewed as the upper sheet of a two-sheeted hyperbo­
loid, of "radius" ft. The reduced phase space of the constant 
energy surface J- I (&1') C T*X is SO(2,1 )/SO(2), which 
is equivalent to the Poincare disk D with canonical symplec­
tic structure induced by the Kahler potential. The reduction 
is given by the map 

p:J- 1(&I')-+D, 

z = [1/( Po + ft)] [Pa + iPo(sh alch a) ]eiO, (7) 

with one-form on D and its curvature given by 

W D = ift[z dzl(1 - zz)], 

11D =ift[dzdzl(1-zZ)2]. (8) 

Any other choice of one-forms is equivalent since D is simply 
connected. One checks that our choice is natural in that the 
quantization of D using the Bargmann-Fock polarization I 
gives the discrete series representation of SO(2,1). The 
Hamiltonian vector field for the angular momentum on D is 
given by 

.( J _ J) 
I Z Jz - z Jz . 

With the symplectic form 11 D' we calculate the Hamiltonian 
function to be ft [zzl (1 - zz) ] using the relation 
11 D - lJY'f = - df This Hamiltonian function pulls back 
via p to ! (Po - ft). This action rotates tin z = re it 

• 

III. CALCULATION OF THE BERRY'S CONNECTION 

We have natural projection 1T:J - I (& !l ) -+ T *R with 
1T( Pa' po,a,f) = (Pa,a) where the image space is the phase 
space considered by McKenna et al. (set P = P a and q = a) 
in their treatment of Posch I-Teller potential. We let T*R be 
the parameter space in the Berry's phase consideration. We 
have the diagram 

The Berry's connection W B is given by 

W B = av p*ift [zdAzI(1 - zz)], (9) 

where av denotes the average over the orbit along 

. ( J _ J) I z--z-
Jz Jz' 

that is the same as over t in z = rei! ; dAis the differential with 
respect to the P a' a coordinates. 
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According to Ref. 8, the effective one-form on T*R 
reads: 

( 10) 

We will show that in terms of the action-angle coordinates 
introduced in Ref. 2, 

p*ift [zdAzI(l - zz)] = ( ft - Po )difJ + df (11) 

One then realizes that, with ft = (A - 1) and 
Po = {A(A - 1}112, W B is equivalent to the correction term 
in Eq. (2). The last factor df, being a total differential, aver­
ages out to zero. 

Proceeding with the calculation, one shows easily that 

OJ D = (Po - ft)dt, 

where 

t=argz=f)+tan-I(sha polcha Pa)· 

It remains to compute (Po - ft)dA t. We have 

Po {sha Pa } (Po -ft)dAt=-- --dPa --2- da. 
Po +ft cha ch a 

Using the action-angle coordinates of Ref. 2, 

sinh a = (p~ - ft2) 1,2 sin ifJlft, 

(p~ - ft2) 112ft cos ifJ 
P = , 

a {ft + (p~ _ ft2) 112 sin2 ifJ}1I2 

we have 

(12) 

(13) 

(14) 

(Po - ft)dAt= (ft- Po)( Polft ch2 a)difJ· (15) 

Since 

Polft ch2a=ft POI(ft2cos2ifJ+p~ sin2 ifJ)· (16) 

Average over ifJ yields 1; therefore, we have Fourier series 
expansion on a ( ft,ifJ): 

Po 00 

--2- = 1 + Len (ft,Po)cos nifJ· 
ft ch a n~ I 

(17) 

Combining (15) and (17), 

00 

(Po - ft)dAt = (ft- Po)difJ + L k n (ft,Po) cos nifJ difJ, 
n~1 

(18) 

the last term is a total differential; Po is treated as a constant 
{A(A _1)}1I2. We finally obtain 

W B =av(po -ft)dAt= (ft-Po)difJ, 

which is the correction term in Ref. 2. 
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A variational principle for continuum states is given that permits numerical solution by the 
Ritz method. It allows one to maximize the accuracy of the solution in preselected 
regions of space, and also allows the selection of that solution from the perhaps infinitely 
degenerate solution set that is needed in the particular application. 

I. INTRODUCTION 

In the treatment of the nuclear effects on the muon­
catalyzed deuterium-tritium (dt) fusion we were con­
fronted by the need to have a highly accurate representa­
tion of the three-body dtJl Coulomb wave function around 
rdt=5 fm, while the muon Bohr radius is -250 fm (Ref. 
1). This need arises when one attempts to describe the 
nuclear interactions by means of the R-matrix method for 
the nuclear two-body subsystem, which demands as input 
data the value and normal derivative of the wave function 
at the nuclear channel radius. There exists at this time a 
very accurate R matrix for the SHe system, covering the 
energy region of interest, i.e., the energy around the dt 
threshold.2 As a result of the nuclear interaction, the 
bound states of the dtJl system are coupled to the three­
body naJl (neutron-alpha-muon) system which, at that 
energy, is 17.6 MeV in the continuum. Hence, the dtJl 
states, which in the absence of the nuclear interactions, 
would have been bound become continuum states that, at 
the same time, acquire the (continuous) infinite degener­
acy of the three-body naJl states. Still, the bulk of the 
dtJl wave function lies around rdt-250 fm, while the wave 
function around the nuclear interaction range, rdt - a 
- 5 fm is exponentially small. This way the region of in­
terest contributes a very small fraction to the energy matrix 
elements and hence will be determined with a relatively 
low accuracy in a variational treatment based on the 
Hamiltonian.3 In this brief report a variational principle is 
described that will allow one to overcome these difficulties 
and to directly obtain the desired solution. Since the cus­
tomary method of proving a variational principle, which 
requires a self-adjoint operator, cannot be used here we 
shall prove the validity of the approach of this paper by 
direct calculation. This proof is the technical substance of 
the present report. 

II. FORMALISM 

We want to solve the Schrodinger equation 

(H - E)'IJ=O (1) 

for continuum states. We shall work with real wave func­
tions. 

The following remarks must be made at this point. (i) 
Equation (1), being a differential equation, must be obeyed 
locally. This is a much more stringent condition than 
the vanishing of a matrix element, for example 

(IIJ 1 (H - E) IIIJ) . We will use the locality condition to 
construct our variational principle. (ii) In the form (1) it 
does not matter whether the support of the solution is the 
infinite space (as is the case for continuum solutions) or a 
compact space (discrete spectrum solutions). Further­
more, our integrations actually involve a compact space; 
they will be carried out in the region rdt > a in the dtJl 
region of the nine-dimensional configuration space. Still, 
one has to account for the fact that one deals with a con­
tinuum. This can be taken care of by anyone of the avail­
able procedures. For reasons of convenience we shall use 
the Weyl eigendifferential method. It has the advantage of 
being "transparent," in the sense that the formulas are not 
changed, except that all matrix elements, e.g., (t/llt/I), are 
fully defined, even when integrating over the complete in­
finite space of the continuum solutions. Without further 
ado, we return to the problem at hand. 

Being in the continuum, i.e., above the threshold, (I) 
has a solution for each energy E. Hence, one has to begin 
by specifying the energy, say E = Eo, at which one wants 
to solve (1). When using a variational approach, one re­
quires an operator that has a definite sign and has an ex­
tremum at the sought solution. This is not the case with the 
operator of (I); it is, however, true for its square. Hence, 
the variational problem 

(2) 

has the appearance that it will converge toward the solu­
tions of ( 1) at the energy E = Eo. Namely, any solution of 
( 1) with E = Eo will yield the value zero for the positive 
semidefinite functional M of (2), for any region of integra­
tion. 

The variational principle (2) has, however, an inher­
ent difficulty. Namely, Eq. (1) is a second-order partial 
differential equation and it has two independent solutions. 
On the other hand, (H - E)2t/1 = 0 is a fourth-order 
partial differential equation, and has four independent 
solutions. Even though it is factorizable into 
(H - E) (H - E), this only means that the two solutions 
of Eq. (1) (the regular and the irregular) are also solu­
tions of (H - E)2. The two other solutions thus are "hid­
den." To find them we observe that the solution xo of the 
inhomogeneous equation 

(H - Eo) X o=({Jo, 

xo= X 0 - ({Jo«({Jol X 0), 

(3a) 

(3b) 
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where qJo is a solution of (1) with E = Eo, fulfills the 
iterated equation 

(4) 

but not Eq. (1). Hence, the set Xo represents the hidden 
solutions. Since the solutions qJE of the equation 

(5) 

form a complete set the functions Xo can be formally ex­
panded as 

Xo(x) =Xo(x) = f dE j(E)qJE(X). (6) 

This expansion converges uniformly except at the singular 
points of H (e.g., at r = 0 and r = 00 for a Coulomb prob­
lem); hence, the designation for the func;tion Xo(x) in (6). 
Thus, at the points of nonuniform convergence, 

(7) 

We will not need the expansion (6). It is only important in 
that it shows that, if not eliminated, Xo in effect introduces 
solutions with E=I=Eo into the results of the variational 
wave function, in particular, in numerical work where the 
integration is performed only over an incomplete (com­
pact) region of space. Therefore, we recognize that the 
variational principle (2) yields only a necessary, but not a 
sufficient condition for obtaining a solution of (1) since it 
cannot distinguish between the solutions qJ and X. We will 
return to the construction of a functional that will provide 
the needed sufficient condition. However, we first intro­
duce the accuracy weighting since we will need it when 
discussing the full variational functional, which we shall 
denote by F=(IKI). 

In numerical calculations one is always confronted by 
the problems associated with the errors contained in the 
results. As explained in the Introduction, in our problem 
we require a high accuracy in the value and derivative of 
the wave function at rdt=5 fm, which, by the way, is one of 
the boundaries of the domain of integration, implied in the 
(I I) notation. The difficulty arises from the fact that this is 
precisely the region of configuration space (in our case an 
odd-shaped three-dimensional space, specified by a 
nonorthogonal coordinate system) where the wave func­
tion has very small values. Hence, the variational principle 
based on the Hamiltonian is very insensitive to errors in 
the wave function in that region of space. This drawback 
can be neutralized by modifying the variational functional 
according to 

('I1IKI'I1) --+ (\Ii IKI'I1), 

\Ii = '11 W, 

(8a) 

(8b) 

where W>O is a suitable (see below) weight function (in 
our case it could be r dt n with n a positive integer). We see 
that (8) is permitted since the operator K is a local oper­
ator as long as it is based on the Hamiltonian (1). Hence, 
if K is chosen such that 

K'I1=O, (9) 

if '11 fulfills (1), the modified matrix element (8) vanishes 
also, whatever the weight function W. Of course, in an 
actual calculation one never deals with an exact solution. 
In that case the variational procedure will tend to diminish 
the errors wherever W is large, while allowing errors to 
increase in the region where W is small. 

Note that the introduction of W has no effect on the 
efficiency, or on any other aspects, of the calculation. In 
particular, it matters not in the least that the form WK 
may not be Hermitean. The factor W is to be used strictly 
as a weight factor, and must not be used in the order KW. 

We now return to the variational principle, and ana­
lyze the form (2). The variational function has the general 
form 

'11 (x) = f a(E)qJE(X)dE + f b(E)XE(X)dE, (lO) 

with qJ and X as defined above and where the desired so­
lution is 

a(E) =o(E - Eo), 

b(E)=O. 

(lla) 

(lIb) 

[Actually, (IIa) is a Kronecker, and not a Dirac, 0 since 
we use Weyl's method.] Now, in view of (3), we have 
locally 

(H - EO)2XE=2(E - EO)qJE + (E - EO)2XE (12) 

and 

(H - EO)2qJE= (E - EO)2qJE. ( 13) 

We now investigate the quantity I: 

1= f dx \Ii *(x)(H - EO)2'11(x) == (\Ii I (H - Eo)21'11), 

(l4) 

where the integration is over an arbitrary compact or the 
full infinite space. Inserting (lO) and using (l2) and (13) 
we have 

1= f dx f dE dE(a(E)qJE(X) + b(E')XE(X»*W(x)(H - Eo)2(a(E)qJE(X) + b(E)XE(X» 

2589 

= J dx J dE dE' (a(E')qJE (x) + b(E)XE(X»*W(x)[b(E){2(E - EO)qJE(X) + (E - EO)2XE} 

+ a(E) (E - Eo)2qJEl 

= J dE dE[a(E)b(E){2(E - Eo) (qJEI WlqJE) + «E - EO)2 + (E - Eo) 2)(qJE I WIXE)} 
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We reemphasize the local character of the integrand of 
(15) which is a consequence of the local character of (12) 
and (13). We have introduced in (15) the notation 

f dx q?l-(x) W(X)q?E(X) == (q?E/ W/q?E) , (16) 

etc. Having used (12) and (13) the integrand of (15) is 
simply an ordinary function (as a consequence of Weyl's 
method no generalized functions arise). Hence, no subtle­
ties are associated with the process of integration, Eq. 
( 16) . We emphasize here that as can be seen by inspection 
from (14), I is a positive semidefinite quantity since the 
integrand is locally a positive semidefinite quantity. Owing 
to the presence of the cross term in (12), this fact is not 
immediately evident in the last form of (15). 

Coming back to our actual computational problem we 
note that since in numerical work the overlaps never ex­
tend over the complete space, the overlap integrals do not 
reflect the orthogonality relations, even for the case 
W(x) = I, and in general none of the overlap integrals 
vanish. Hence, (15) must be carefully discussed. 

To begin with, assume that the starting function'll is 
reasonable, i.e., that it is close to fulfilling (11); more spe­
cifically, assume that over the energy interval where aCE) 
is not negligibly small the overlap (q?E/ W/q?E) and also the 
overlap (xEI WIXE) retain their positive sign, valid for 
E' = E = Eo. In that case the third and the fourth terms 
will have manifestly positive semidefinite integrands. The 
overall contribution of all terms can still only be positive in 
view of the positive semidefinite character of I. However, 
the condition (11b), i.e., the elimination of the contribu­
tion of XE from our solution, specifically the case beE) 
= br/J(E - Eo), is not ensured since all contributions 
(positive and negative) vanish for E = Eo. Still, for 
E=foEo the variational principle (2) can be used to elimi­
nate all a(E), beE) from the variational function'll. One 
then is left with 

aCE) = ar/J (E - Eo) (17a) 

and 

beE) =br/J(E - Eo). (17b) 

To eliminate the latter, one requires another variational 
principle, i.e., one which projects to q?o but not to Xo. This 
then is provided by the functional 

J = (q; I (H - Eo) /'11)2. (18) 

Taking into account (17a) and (17b) we find 

J= [aobo( ~ol Wlq?o) + b0
2

( X 0/ Wlq?o) ]2, (19a) 

which then enforces also bo = 0, by evaluating the matrix 
elements in (19a) with two different weight functions Wi 
such that 
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(q?o/ Wdq?o) =fo (Xol Wdq?o) 
(q?ol W2 lq?o) (Xol W2 lq?o) . 

(I5) 

(19b) 

Now a remark concerning the abovementioned ques­
tion of the suitability of a weight function. Since, in gen­
eral, WK is not a Hermitean operator the point that H - E 
is a local operator has to be used. More particularly, the 
overlap (W1/IIKI1/I) can achieve the value zero not only as 
a consequence of the desired case K1/I=O but also by can­
cellations between positive and negative contributions of 
the integral. In particular, an "unsuitable" weight factor W 
by this mechanism could make J, Eq. (18) vanish, without 
achieving a solution of (I). Even though the functional I 
would guard against it, such a W could lead to instabilities 
in the calculation. The "suitability" of a chosen W must be 
checked by numerical tests. This completes the description 
of the variational principle. We now tum to the last prob­
lem, viz., the resolution of the degeneracy of the states. 

Since the number of independent continuum solutions 
equals the number of open channels, which, depending on 
the system, may be finite or infinite, in general, one needs a 
prescription on how to select the solutions of interest with­
out having to compute the full set of solutions. This pre­
scription must be supplied by the physics of the problem. 
The prescription then may be expressed as an auxiliary 
condition, a constraint, specified by an operator 0, which 
can be added by Lagrange's procedure to the variational 
problem. (In our case the fusion reaction proceeds through 
a unique doorway state that decays electromagnetically to 
the fusion state. The prescription here thus is:4 maximize 
the square of the electromagnetic transition amplitude 
from the doorway state.) The constraint functional then 
can be written as 

(20) 

where 0 is the operator that splits the degeneracy in the 
desired fashion; it has to be constructed to have a positive 
definite matrix element. (In our case 

(21) 

where Hint is the electromagnetic transition operator, and 
'lid is the wave function of the doorway state.4 Inserting in 
(20) the exact solution one sees that for our case it equals 
minus the negative of the transition probability, and hence 
at the minimum it maximizes the transition probability, 
i.e., it picks out that linear combination of degenerate so­
lutions at E = Eo, through which the reaction proceeds.) 

In general, the operator 0 will be a function of E; it 
thus will pull the computed minimum of the full varia­
tional problem toward the rising side of its own absolute 
value. To check this tendency one can give the individual 
terms different weights, say Land M> O. Hence, we write 
for the final expression 
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{
( qll (H - Eo)21'11) (qll (H - Eo) 1'II)2} 

L ('Ill'll) + ('111'11)2 

('11101'11) 
- M ('Ill'll) Min. (22) 

The tilde and double-tilde notation indicates that the 
weight function in the two terms may be different; the 
degeneracy-breaking term has W = 1. 

Performing the calculation for different ratios M / L, 
maintaining, e.g., L + M = 2, one can check for the stabil­
ity of the obtained results. (The actual solution formally is 
given by the limes M -0.) This test will be important if B, 
Eq. (20) has a steep energy dependence. At any rate, one 
always can use (1) to compute the errors in the solution in 
the region of interest since (1) is a local equation, i.e., it 
must be fulfilled at every point in position space. This way 
one can check whether the achieved accuracy fulfills the 
needs at hand. 

2591 J. Math. Phys .• Vol. 31. No. 11. November 1990 

ACKNOWLEDGMENTS 

I would like to thank L. C. Biedenharn, S. Haywood, 
H. Monkhorst, J. Rafelski, A. Stahlhofen, and K. Sza­
lewicz for many useful discussions. 

I See, e.g., Proceedings of the Muon Catalyzed Fusion Workshop, Sanibel 
Island, AlP Conference Proceedings, Vol. 181, edited by S. E. Jones, J. 
RafeJski, and H. Monkhorst (AlP, New York, 1989). 

2G. M. Hale, N. Jarmie, and R. E. Brown, Phys. Rev. Lett. 59, 763 
( 1987). 

J For a review of the different available methods see, e.g., R. K. Nesbitt, 
Variational Methods in Electron-Atom Scattering Theory (Plenum, New 
York, 1980). 

4 A full discussion of this case including the proof of the uniqueness of 
the solution is contained in M. Danos, A. Stahlhofen. and L. C. Bieden­
ham, Ann. Phys. (NY) 192, 158 (1989). 

Michael Danos 2591 



                                                                                                                                    

Physical constraints on the coefficients of Fourier expansions in cylindrical 
coordinates 

H. Ralph Lewis8) 

Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

Paul M. Bellan 
California Institute o/Technology, Pasadena, California 91125 

(Received 12 March 1990; accepted for publication 20 June 1990) 

It is demonstrated that (i) the postulate of infinite differentiability in Cartesian coordinates 
and (ii) the physical assumption of regularity on the axis of a cylindrical coordinate system 
provide significant simplifying constraints on the coefficients of Fourier expansions in 
cylindrical coordinates. These constraints are independent of any governing equations. The 
simplification can provide considerable practical benefit for the analysis (especially numerical) 
of actual physical problems. Of equal importance, these constraints demonstrate that if A is 
any arbitrary physical vector, then the only finite Fourier terms of Ar and Ae are those with 
m = 1 symmetry. In the Appendix, it is further shown that postulate (i) may be inferred from 
a more primitive assumption, namely, the arbitrariness of the location of the cylindrical axis of 
the coordinate system. 

I. INTRODUCTION 

In mathematical physics, changing from one set of inde­
pendent variables to a different, but equivalent, set is a mat­
ter of convenience only, since all physical results must be 
independent of the choice of coordinate system. Frequently, 
the choice of independent variables is motivated by some 
symmetry of the problem. For example, if there is a line 
source, or if boundary conditions are specified on a circular 
cylinder, then cylindrical coordinates are likely most appro­
priate. However, the choice of a particular set of indepen­
dent variables (e.g., the r, e, z of cylindrical coordinates) 
might inadvertently introduce mathematically allowable but 
physically unrealistic terms-e.g., singularities at the axis. 
These nonphysical terms must be eliminated by the imposi­
tion of physical constraints on the mathematical solutions. 

Let us briefly review two traditional methods by which 
these constraints are imposed. 

( 1) Analytic method: First, a set of equations relevant 
to the problem at hand is derived; second, general math­
ematical solutions to these equations are found; third, some 
subset of these solutions is discarded as being nonphysical, 
and finally, boundary conditions are used to determine a 
suitable combination of the remaining physically allowable 
solutions to describe the specific problem. 

(2) Numerical method: Again, a set of equations rel­
evant to the problem is derived; second, the space in which 
the problem is to be solved is quantized into grid points; 
third, the equations are put into discrete form so as to estab­
lish a numerical algorithm; fourth, a numerical solution is 
developed using the algorithm. Mathematically allowable 
but nonphysical solutions are eliminated by constraints de­
termined in an ad hoc manner. For example, a simplified but 
local analytic solution might be developed in the neighbor-

U>Temporary address: U.S. Department of Energy, Office of Energy Re­
search, Office of Fusion Energy, Washington, DC 20545. 

hood of the axis, and then grafted onto the numerical solu­
tion outside this region. 

. A well-known example of the analytical method is 
where one Fourier analyzes in z and e linear partial differen­
tial equations so as to obtain an ordinary differential equa­
tion in r for the Fourier coefficients. Physical constraints are 
imposed in order that solutions of the equations be regular in 
the region of interest. The most obvious example of this 
method is that involving Bessel's equation: Although both 
the J m and Y m Bessel functions satisfy Bessel's equation, for 
physical problems including the axis, one rejects the Y m so­
lution because the Y m solution is singular there. 

The point we wish to make in this paper is that the phys­
ical constraints are more fundamental than the differential 
equations and can be determined without reference to differ­
ential or any other equations. In this paper we restrict our 
attention to cylindrical coordinates. However, similar con­
siderations apply to all variable transformations, those of a 
nongeometrical nature as well as those of a geometrical na­
ture. 

There are three reasons why it is important for one to be 
able to determine the constraints without reference to any 
governing equations. First, even if governing equations are 
known and could, in principle, be used to derive the con­
straints (e.g., by rejecting singular solutions), it is generally 
more convenient to be able to assume from the outset the 
form required of each quantity. In numerical computation of 
physical problems especially, singular nonphysical terms are 
a serious difficulty since small finite differencing or trunca­
tion errors easily excite the unwanted terms. Because these 
nonphysical terms are divergent, they mask the desired 
physical solution and render the computation useless. It is 
clearly essential in these situations to be able to invoke con­
straints that eliminate the unwanted divergences. (Often in 
contemporary work, if a problem is sufficiently complicated, 
numerical analysts resort to the messy stratagem of solving 
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the problem using a less appropriate coordinate system sole­
ly to avoid difficulties with these nonphysical singularities­
e.g., Cartesian coordinates are often used for problems that 
have cylindrical symmetry simply to avoid singularities at 
the axis. Clearly, it would be preferable to be able to invoke 
appropriate physical constraints and so use the more natural 
cylindrical coordinates.) 

Second, although the governing equations might be 
known, they may be so complicated that it is not feasible to 
use them to provide constraints. Indeed, the considerations 
in this paper originated from a numerical computation prob­
lem in plasma physics where the governing equations were 
integrodifferential equations in a cylindrical coordinate sys­
tem. Because these equations were nonlocal, it was not possi­
ble to determine the behavior of solutions at the axis and so 
guarantee regularity. 

Third, it may be that the governing equations are un­
known or even that a solution to the governing equations is 
not sought. The results of this paper have been applied 1 to 
reduce in a most substantial and significant manner the com­
plexity of the theoretical description ofa magnetohydrodyn­
amic dynamo problem where the precise form of the govern­
ing equations was not well established. 

II. SYMMETRY CONSTRAINT 

Before we launch into our discussion of regularity, it is 
worthwhile to derive a purely mathematical symmetry con­
straint on Fourier coefficients. Later, we will combine this 
result with the regularity analysis to determine the least re­
strictive physically permissible Fourier coefficients. 

We consider the transformation between Cartesian co­
ordinates (x,y,z) and cylindrical coordinates (r,O,z) given 
by 

x = r cos 0, y = r sin 0. (1) 

In our considerations here and in the rest of this paper the z 
coordinate will never playa role; thus we hold it constant 
and henceforth suppress it in the notation. The Cartesian 
coordinates of a point are not changed by replacing r by - r 
andObyO + 1TinEq. (1). This symmetry of the transforma­
tion requires that any point function of (r,O), say f(r,O), 
satisfy 

f(r,O) = f( - r,O + 1T). (2) 

Ifwe make a Fourier series representation off(r,O) , 

00 

f(r,O) = L am (r)eimO
, (3) 

In=-oo 

we see that in order to satisfy Eq. (2), we must have 

am (r) = ( - 1) ma m ( - r). (4) 

In words, if m is even, then am is an even function of r, 
whereas if m is odd, then am is an odd function of r. This 
symmetry result also restricts the form of physically allowed 
linear differential equations for am (r) to be such as not to 
not alter the parity of am (r); all terms in a linear differential 
equation must be odd in ror else all even in r (if the equation 
is nonlinear, then this restriction need not apply). 
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III. REGULARITY CONSTRAINT: SCALARS 

Let us assume that IJI (r,O) is a physical scalar, regular at 
r = 0, and express IJI as a Fourier series with respect to 0. 
Thus we write 

00 00 

lJI(r,O) = L am (r)exp(imO) = L IJI m (r,O). 
m= - 00 m= - 00 

(5) 

We now show that am (r) must have a very specific type of r 
dependence. We use the assumption that each coefficient 
IJI m (r,O) is a regular (i.e., infinitely differentiable) function 
of (x,y) at r = O. The function exp(imO) is not a regular 
function of (x,y) at r = O. However, the function 
[r exp( ± imO)] Iml = (x ± iy) Iml is obviously a regular 
function of (x,y) because it is a polynominal in (x,y). We 
express IJI m as 

IJI m = am (r)exp(imO) = [am (r)/rlml ] [r exp( ± iO)] Iml 

(6) 

where the + sign is used if m > 0 and the - sign is used if 
m < O. Since (x ± iy) Iml is regular, we must require that 
am (r)/rlml be regular. For am (r)/rlml to be nonsingular, we 
must require 

am (r) _rlml as r-+O. (7) 

The symmetry constraint of Eq. (4) then gives 

am (r) = rlm!!m (,z), (8) 

where/'n (,z) is a regular function of,z and so has a Taylor 
expansion 

/'n (r2) = f<;:) + f<';;),z + f<,:)r4 + ... . (9) 

If odd powers of r were present in Eq. (9) then, because 

r = ~X2 + y2, /'n (r) would not be a regular function of 
(x,y). 

The analysis in this section was based on the postulate 
that all physical quantities when expressed in Cartesian co­
ordinates are infinitely differentiable on the axis. It is shown 
in the Appendix that this postulate may be inferred from a 
more primitive assumption, namely, the assumption that the 
location of the cylindrical axis of a coordinate system for 
describing a physical system is arbitrary. 

IV. REGULARITY CONSTRAINTS: VECTORS 

Let A be a vector representing a physical quantity. We 
will again exploit the transformation from cylindrical to 
Cartesian coordinates to determine the functional form of 
cylindrical components of A. We do this by writing 

A =Arr+AoO+Azz 

= Ar (cos O,sin 0,0) 

+ Ao ( - sin O,cos O,Q) + Az (0,0, 1), (10) 

in which case 

Ax = Ar cos 0- Ao sin 0. (11) 

Let us now expand A r and A ° in terms of their Fourier terms 
in 0: 
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A = r Arm exp(imO), 
In=-oo 

00 

Ao = L AIJrn exp(imO). 
m=-oo 

Combining Eqs. (11) and (12), we obtain 

(12) 

or 

I 
A =­

x 2 
m= - 00 

[(Arm + fA om )ei(m + 1)0 

+ (Arm - fA om )ei(m - 1)0] ( 13a) 

+ ~ ~oo [(A +iA )e-i(Jml-I)O+ (A -fA )e-i(Jml+I)O] 
2 ~ rm Om rm Om • (l3b) 
m~ -I 

We may rewrite Eq. (13b) as 

I 00 [ • 

Ax =- L (Arm +zAOm) 
2 m~ 1 

(X+iy)lml+' . (x+iy)lml-l] 
Iml + 1 + (Arm - lAom ) Iml _ 1 

r r 

+ ~ [(A,o + iA oo ) (x + fy) + (A,o _ iAoo) (x - iy) ] 
2 r r 

1 -00 [ • (x-iy)lml-' . (x-z:y)lml+I]. + -2 In~"-I (Arm + zAOm) --'--~-- + (Arm - zAOm) --~--~ rlml - 1 rlml + 1 
(14) 

We require each term in Eq. (14) to be regular. Only positive 
powers of x ± iy occur and these factors are all regular. Thus 
we must require the regularity of the remaining factors. We 
will consider m > 0, m = 0, and m < 0 separately. 

Case (i), m = 0: Here, we require that (A,o ± A80 )Ir 
be regular, so that we must have bothArO -randAoo -r as 
r ..... O. 

Case (ii), m > 0: For regularity we must have, as r-O, 
both 

Arm + iAom -rI', where p>lml + I (l5a) 

and 

Arm - iA8m -r', where q>lml- I, ( 15b) 

since both these terms occur for m > O. We could let 
P = q = I m I + 1, but this is not the least restrictive possibil­
ity. To obtain the least restrictive possibility, we satisfy Eq. 
(15b) by letting q = Iml - 1 with both Arm _rlml - 1 and 
Aom _rlml - 1 as r ..... O. However, Eq. (15a) will then be vio­
lated unless we set A rm + iA 8m = 0 for terms of order rl m I - I. 

Thus the least restrictive allowable form is 

Arm = Amrlml - 1 + rlml + Igm (r), 

Aom = Umrlml-I + rlml + 'hm (r), (16) 

where Am is a constant and gm (r) and hm (r) are regular 
functions ofr of the form given by Eq. (9). [We have used 
the symmetry constraint of Eq. (4) as we did earlier when 
treating scalars.] 

Case (iii), m < 0: Here, examination of Eq. (14) shows 
that we must require as r-O 

(l7a) 

and 
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Arm - iAom -rI', where p>lml + 1, (l7b) 

since both these terms occur for m < O. Using the same type 
of argument as for the m > 0 case above we find here that we 
must have 

Arm = Amrlml - 1 + rlml + Igm (r), 

A8m = - Umrlml - 1 + rlml + 'hm (r). (18) 

SinceAz behaves like a scalar, it is described by Eq. (8). 

Combining the results derived above we find that the general 
form for a vector is, for m =1= 0, 

Arm = Amrlml - 1 + rlml + Igm (r), 

A8m = i sgn(m)Amrlml - IUm (r) + rlml + 'hm (r), 

Azm = rlm!!'n (r), (19a) 

while, for m = 0, 

A,o = rgo (r), Aoo = rho(r), AzO =Io(r). (l9b) 

The peculiar form of the Am terms in Eq. (19a) can also 
be derived by requiring that the divergence and curl of the 
vector are always finite and then examining these quantities 
as r-O. For example, if we require 

V·A = finite, (20) 

then, as r ..... O, Eq. (20) becomes 

. [a(rA r) aAo ] 
hm --+-- =0. 
r-O ar ao 

(21) 

If we assume that Ar _Arlml - I, where m> I, and that both 
Ar and Ao -exp(imO), then we obtain Ao = i sgn(m)Ar 
consistent with Eq. (19a). A similar observation occurs 
when we calculate (VXA)z. 
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V. IMPORTANCE OF m= 1 MODES 

Equation (19a) has the very interesting physical conse­
quence of showing that I m I = 1 Fourier terms form a special 
class, because only these modes can haveA, and Ao finite at 
r = O. These I m I = 1 modes are observed to be important in 
magnetohydrodynamic (MHD) instabilities present in to­
kamaks,2 reversed field pinches, I and spheromaks. 3 

In many physically interesting problems, one is interest­
ed in quantities of the form 

z·AXB = A,Be - AeB,. 

For example, in magnetohydrodynamics, Ohm's law with 
the Hall term included has the form 

E + UXB - (lIne)JXB = TJJ, (22) 

where J, B, E, and U are, respectively, the electric current 
density, the magnetic field, the electric field, and the velocity 
field; TJ is the resistivity, n is the charged particle density, and 
e is the charge on an electron. In dynamo theory l,4.5 and 
MHD rf current drive schemes, 6, 

7 one searches for ways of 
driving a dc current on the rhs of Eq. (22) using only ac 
quantities on the Ihs. If this dc current is to be directed in the 
z direction of a cylindrical coordinate system, then we take 
the z component of Eq. (22) 

(Ez +z·UxB - (llne)z·JxB) = TJJzdc> (23) 

where ( ) denotes time average and tilde denotes ac quantity. 
Since only the Iml = 1 terms in the f) and z components of 
the ac vectors are finite at r = 0, we immediately know that 
only I m I = 1 terms of the ac fields offer the possibility of 
driving dc currents along the z axis. This removes from con­
sideration the infinity of modes for which I m I i= 1 and so 
provides an enormous simplification I of the problem, even 
before having to determine the relevant equations for U, J, 
B. 
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APPENDIX: INFERENCE OF INFINITE 
DIFFERENTIABILITY FROM A MORE PRIMITIVE 
ASSUMPTION 

The analysis in the main body of this paper was based on 
the postulate that all physical quantities when expressed in 
Cartesian coordinates are infinitely differentiable on the 
axis. We show here that this postulate may be inferred from a 
more primitive assumption, namely, the assumption that the 
location of the cylindrical axis of a coordinate system de­
scribing a physical system is arbitrary. 

The basic requirement is that the expression for a quan­
tity in, terms of a particular set of variables do not exhibit 
peculiarities which are nonphysical and only a result of the 
choice of variables, We consider a quantity represented by a 
nonsingular Fourier series with respect to the angle variable 
of a cylindrical coordinate system. Suppose on physical 
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grounds that the quantity in question could be represented 
equally well by a Fourier series with respect to the angle 
variable of any other cylindrical coordinate system, whose 
cylindrical axis is parallel to the original axis, but is located 
anywhere in a neighborhood of the original axis. That is, we 
suppose that the location of the cylindrical coordinate axis is 
irrelevant to the physical problem; the location is chosen 
purely for convenience. 

For studying the differentiability at r = 0 of Fourier se­
ries, it suffices to take the case where [(r,f) and the coeffi­
cients am (r) are scalars. This is because those quantities can 
represent an arbitrary Cartesian component of a tensor. Any 
Fourier series in the variable f) is manifestly infinitely differ­
entiable with respect to f) because expUmf) is infinitely dif­
ferentiable. We now suppose that the quantity represented 
by [(r,f) is nonsingular and could be equally well represent­
ed by a Fourier series with respect to the angle variable of 
any other cylindrical coordinate system whosez axis is paral­
lel to the original z axis, but is located anywhere in a neigh­
borhood of the original axis. This is a weak assumption. If 
the quantity of physical interest were singular, then either a 
related nonsingular function could be defined (for example, 
by subtracting the electric potential due to a line charge lo­
cated on the cylindrical axis), or the singular quantity could 
be viewed as the limit of a sequence of nonsingular quanti­
ties, The results presented here would apply to each member 
of the sequence and, therefore, to the singular limit as well. 

Consider two equivalent cylindrical coordinate systems, 
as illustrated in Fig. 1. The coordinates of the chosen cylin­
drical system are denoted by (r,f),z) and the associated Car­
tesian coordinates are (x,y,z). The z axis is normal to the 
plane of the drawing and passes through the point labeled A. 
The coordinates of the other cylindrical system are (r n ,f) n ,z) 
and the associated Cartesian coordinates are (xn,Yn'z). The 
axis of that system has coordinates 

y 

FIG. I. Relation of the (x .. ,y .. ) coordinate system to the (x,y) coordinate 
system. 
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r=Rn, O=tPn (AI) 

in the chosen cylindrical system; these coordinates are arbi­
trary. The coordinates (rn,On) of the axis A are 

r" = R", 0" = tPn + 1T. (A2) 

Denote the function/(r,O) expressed in terms of (rn,On) by 
In (rn,On) and expressed in terms of (x,y) by F(x,y); by as­
sumption,ln (rn,On) possesses a Fourier series in the vari­
able On and is thus infinitely differentiable with respect to On' 
The derivatives with respect to r nand On can be expressed in 
terms of derivatives with respect to x" and Yll by repeated 
application of the formulas 

a 0 a . 0 a -=cos ,,--+sm ,,-, 
ar" aXn ay" 

(A3) 

(A4) 

Since the (xn,Yn) system is related to the (x,y) system by a 
simple translation, we have 

a a a a --=-, -=-
ax" ax ay" ay 

and, in particular, we can write Eq. (A4) as 

a 'oa oa --= -r" stn ,,-+rn cos 11-' 

ao" ax ay 

Using Eq. (A6), the derivative 

ap 

-In (rn,O,,) 
ao~ 

(A5) 

(A6) 

can be expressed in terms of derivatives with respect to x and 
y of F(x,y); that expression will contain the (p + 1) deriva­
tives of F(x,y) of order p. By choosing (p + 1) different axes 
(R 11 ,tP" ) and evaluating the pth derivative with respect to Oil 
for each of the (p + 1) functionsln (rn,On) at the axis A, we 
obtain a linear system of (p + 1) equations for the (p + 1) 
derivatives of F(x,y) of order p at the axisA. Solution of that 
system gives the derivatives of F(x,y) of order p in terms of 
the derivatives of F(x,y) oflower order and the derivatives 
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all evaluated at the axisA. In this way, beginning withp = 1, 
we can evaluate all of the derivatives of F(x,y) of order p for 
each successive value of p. The linear system is soluble for 
nearly any choice of (p + 1) axes. For example, for p = 1, 
the linear system is 

- Rl sin(tPl + 1T)Fx (0,0) + Rl COS(tPl + 1T)Fy (0,0) 

=a~J.(rl,OI)lr'=R' ' (A7) 
1 1l,=4>,+rr 

- R2 sin(tP2 + 1T)Fx (0,0) + R2 COS(tP2 + 1T)Fy (0,0) 

= a~ J;(r2,02) I r, = R, (A8) 
2 1l,=4>,+" 

The determinant of the coefficients is 

(A9) 

so that Fx (0,0) and Fy (0,0) can be determined from Eqs. 
(A7) and (A8) as long as Rl#O, R2#0, and tPl#tP2' By 
showing how to evaluate all of the derivatives of F(x,y) at 
the axis A, we have shown that F(x,y) is infinitely differen­
tiable at the axis A solely as a result of the arbitrariness of the 
location ofthe cylindrical axis of the coordinate system and 
the postulate of a Fourier representation with respect to the 
angle variable in each of the possible cylindrical coordinate 
systems. 
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A general class of Backlund transformations are considered for equations of the form 
izy + Zxx + j(z,z) = 0, where /(z,z) is a function of z = x + iy and z = x - iy. The nonlinear 
forms of this equation that admit such transformations are completely classified and shown to 
exist only when/(z,z) = n (the nonlinear SchrOdinger equation), z In z, z In z, (z + Z)2, or 
suitable combinations of these functions. The form/(z,z) = (z + z)2leads to auto-Backlund 
transformations for the Boussinesq equation. 

I. INTRODUCTION 

McLaughlin and Scott I proved the elegant result that 
the only equations of the form Zxy = F(z) admitting any 
members of a wide class of auto-Backlund transformations 
were those for which F" (z) = AF(z), A constant. More re­
cently, Nimmo and Crighton2.3 obtained general results 
concerning the existence of Backlund transformations 
(BT's) for the cylindrical Korteweg-de Vries equation, 
Uxxx + 6uux + uy + m(u,x,y) = 0, and the nonlinear para­
bolic equation, u, + Uxx + H(ux,u,x,t) = 0, respectively. 

The present paper is in the spirit of the above work and 
explores the range offunctions/(z,z) for which 

(1.1 ) 

admits BT's of a given general class. Here z is complex so 
that (1.1) may also be regarded as two coupled real partial 
differential equations. The complex equation (1.1) is a gen­
eralization of the well-known nonlinear Schrodinger equa­
tion (NLSE), izy + Zxx + n = O. Lamb4 derived BT's for 
the NLSE using the method of Clairin. 5 In the process he 
made certain simplifying assumptions, suggesting that it 
might be advantageous to look at other cases, although it is 
seen later that this does not tum out to be the case. Indeed 
the more general equation (1.1) is here exhaustively investi­
gated with the conclusion that/must be one of the forms rz, 
z In Z,Z In z, (z + Z)2, or suitable combinations ofthesefunc­
tions. The logarithmic nonlinearity z In z occurs in wave 
equations derived from quantum models (see, e.g., Refs 6 
and 7) and Steudl8 has discussed invariant transformations 
of ( 1.1 ) when/(z,z) = z In z. The BT's obtained for the case 
/(z,z) = (z + z)21ead to auto-BT's for the Boussinesq equa­
tion in the form Uyy + u xxxx + (4u2

) xx = 0, u (x,y) being the 
real part of z(x,y). Fukushima et al.9 study a nonlinear 
transmission line and modeled the circuit by a modified 
NLSE equivalent to/(z,z) = (zz) 1I2Z in (1.1). They observe 
envelope solitons and obtain good agreement between exper­
iment and theory. The results of this paper show that BT's of 
a wide class do not exist for this equation. 

The calculations involved in making these deductions 
have been greatly facilitated by the computer algebraic ma­
nipulation package REDUCE. 

In Sec. II the class of BT's considered is defined and in 
Sec. III a set of functional equations is derived, which are 
then investigated for three exclusive cases in Secs. IV-VI. 

II. A CLASS OF BACKLUND TRANSFORMATIONS 

We consider BT's of the form 

p = ¢(z,z,z',z',p',p',q',q'), 

q = ¢(z,z,z',z',p',p',q',q') , 

which relate the two equations 

iq + r + /(z,z) = 0 

and 

iq' + r' + !'(z',z') = 0, 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 

where, with the usual notation p = Zx' q = Zy' r = Zxx' 
s = Zxy' and t = Zyy' and similarly for p', q', I, s', and t' in 
terms of z'. If/and /' are the same functions the BT is an 
auto-Backlund transformation. As long as p and q occur ex­
plicitly (2.1) and (2.2) represent the most general pair of 
complex functional relations connecting the dependent vari­
ables z and z' and their derivatives. This is a very wide class of 
BT's. An example of a BT outside this class is given by 
Kingston and Rogers,1O where the BT given above is essen­
tially amalgamated with a hodograph-type transformation. 

Equations (2.1)-(2.4) enablep, q, r, and r' (and their 
conjugates) to be expressed in terms ofz, z',p', and q' (and 
their conjugates). We require this system of equations to be 
consistent in the sense that no new relations between these 
variables and s', t ' and their conjugates are implied. Since p, 
q, and r are connected by 

ap ap aq 
r=-, -=-, 

ax ay ax 
(2.5) 

these relations must therefore be identities in z, z', p', q', s', 
and t' and their conjugates. It is these two identities that 
enable the BT's to be derived and that ultimately impose 
restrictions on the functional forms of!.!" ¢, and ¢. 

Since the main advantage of BT's is that they enable 
progress to be made in the study of nonlinear equations we 
will assume that (2.3) is nonlinear and exclude cases in 
which/(z,z) is linear in both z and Z. 

Note that if (2.1)-( 2.5) can be satisfied for suitable 
functions!.!" ¢, and ¢ then under the linear transformation 
Zl =az+{3, z; =a'z'+{3',wherea,{3,a',and{3'arecon­
stants and a and a' are nonzero, the new transformed equa­
tions [(2.1 )-(2.5)] take the same form and may be satisfied 
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for suitable functions/l ,Ii, "'I' and ¢I . For example, (2.3) 
becomes 

iql + r l +11 (ZI ,ZI ) = 0, 
where ql = aZI lay, r l = a 2Z1 lax2, and where the function 
iI is defined by iI (ZpZI ) = aj{(zl - {3)/a,(zl - /J)/ii}. 
This enables simplifications to be made in the subsequent 
analysis without loss of generality. 

III. CONDITIONS ON THE BACKLUND 
TRANSFORMATIONS 

The two identities implied by (2.5) may be represented 
by 

EI =0, E2 =0, 
where 

ap 
EI =--r, 

ax 
ap aq 

E2 =--­ay ax 

(3.1 ) 

(3.2) 

(3.3 ) 

Using the forms ofp, q, r, and r' given by (2.1 )-(2.4), we can 
successively calculate that 

E 21 , = "'q" Eit' =""/" 
Eu = "'p' - ¢q" E2s = "'P' - ¢q" 

(3.4) 

(3.5) 

E2q'q' =2i",p'p" E 2q'ij' = -2i"'p'll' (3.6) 

All these expressions must also be identically zero. Equation 
(3.4) shows that'" is independent of q' and g' while (3.6) 
gives that '" is linear in p' and p'. Together with (3.5) these 
deductions show that p and q are of the form 

p = kp'p' + Ip' + mp' + n, (3.7) 

q = kq'g' + /q' + kg'p' + mg' + H, (3.8) 

where k, I, m, and n are functions of z, z', Z, and Z' and H is a 
function of z, z', z, z', p', and p'. 

Calculation of E lq, [ = 2i(kp' + m)] immediately gives 
k = m = 0. It now follows that 

EIll - E2q, = 2iHp' , E2q,p' = iHp'p" 

so that 

H=rp'+x, 

where r and X are functions of z, z', Z, and Z'. 

(3.9) 

Now E2 is a polynomial inp', p', q', and g' and EI is a 
polynomial inp' andp'. All coefficients must vanish and this 
leads directly to the 11 conditions: 

lIz + Iz' = 0, 

liz + Iz' = 0, 

ntz + 'ilz = 0, 

nzI + nz = 0, 

n) + nz, = - ir, 

- Iz r + r) + 7 z' = 0, 

- /'/i + 7 zI + 7" = 0, 

iX + nnz + nn, + I -If' = 0, 

-n;r+XzI+xz =0, 
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(3.10) 

(3.11 ) 

( 3.12) 

(3.13 ) 

(3.14 ) 

(3.15 ) 

(3.16) 

(3.17 ) 

(3.18 ) 

-lzX -Izi - nz7 + t zn + t zn + Xzl + Xz' = 0, 
(3.19) 

-/,7 - nzX - nzi + Xzn + Xin = 0. (3.20) 

The BT is now of the form 

p = Ip' + n, 

q = Iq' + 7P' + X. 

(3.21) 

(3.22) 

Thederivatives,nz' and n," given by (3.14) and (3.13), 
are compatible providing [use is made here of (3.10), its 
conjugate and (3.16)] 

(3.23 ) 

Either 7 = 0 or 7:;60. If 7:;60 then Iz = 0 and it is also clear 
from (3.14) that n:;60 so that (3.10)-(3.12) giveallderiva­
tives of I zero, showing that I is constant. 

Note that in the constraints (3.10)-(3.20), when I is 
constant, the transformations Z -+ Iz, n -+ In, 7-+ lr, X -+ lx, 
1-+ if, and/' -+ /' makes I "disappear." That is, the same con­
straints are obtained as would have been obtained by setting 
I = 1. Hence we can take I = 1 without loss of generality 
(I = a leads nowhere) in the I constant case with the proviso 
that any result may be generalized by reversing the above 
transformation. 

We may now divide the analysis into case 1: 7 = 0, 1 = 1; 
case 2: 7 = 0,1 not a constant; and case 3: 7:;60, 1 = 1. 

IV. CASE 1: 1'=0,1=1 

If the variables t and 7] are introduced, 

t=z+z',7]=z-z', (4.1 ) 

Eqs. (3.13) and (3.14) showthatn isindependentofsand~, 
that is, n = n(7],ij). Also, (3.18) and (3.19) give 
X = X(7],ij)· Equation (3.17) now implies that 
I(z,z) - /'(z',z') isindependentofbothsand~. Taking par­
tial derivatives with respect to S and ~ gives, respectively, 

h - I;. = 0, h - I;. = O. 

It follows, in particular, that/(z,z) is linear in bothz and 
z so that it is not possible for a nonlinear equation (2.3) to 
arise in this case. 

V. CASE 2: 1'=0,1 NOT CONSTANT 

From (3.17), 

X= i(j-If' + nnz + linz )' 

and substituting for X into (3.18) gives 

if. -If;, = o. 

(5.1 ) 

(5.2) 

Also, (3.19) may be expressed (simplifying X z and X z' ) as 

IzX + Izi = il(h - I;,)· (5.3) 

Now define the operator T: 

a a 
T=I-+-. az az' (5.4 ) 

Since Tl = TI = a from (3.11) and the conjugate of (3.1 0), 
operating on (5.2) with T gives 

Ig = g', (5.5) 

whereg(z,z) =hz andg'(z',z') =I;,z' Further, applying T 
and its conjugate T= I(al(Ji) + al(Ji' to (5.5) gives, re-
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spectively, 

17gz =g~, 
-/ 2 , gz =gz· 

(5.6) 

(5.7) 

Sinceh and/~ do or do not vanish together [see (5.2) ) 
and the same is trueforlzz and/'fi [see (5.5»), the analysis 
may be divided into the three subcases: (a) Iii. =1=0'/;7 =1=0; 
(b)/ii. =0'/;7 =O,h=l=O'/~=I=O;and (c)h =/i. =0. 

In what follows it will be seen that only the first and 
third of these cases lead to nonlinear forms of /(z,'i) and 
/'(z','i'). 

(a)lzz =1=0'/;7 =1=0. In this case g=l= 0 andg' =1=0, and iflis 
eliminated between (5.5) and (5.7) and the variables sepa­
rated, it is found that 

g = 1I(az + h(z», g' = 1I(az' + h '(z'», (5.8) 

where a is constant and h,h ' are arbitrary functions. Equa­
tion (5.6), using (5.5) and (5.8), may now be separated to 
give 

hz (az + h)/(az + h) = h;. (az' + h ')/(az' + h') 

= const. (5.9) 

It is now straightforward to deduce that h is linear in z ~nd 
thath' is linear inz', so that IIgis linear inzand'iand IIg'is 
linear in z' and 'i'. Neither g nor g' can be constant unless 
both are constants [see (5.6») and then (5.5) is contradict­
ed since 1 is not constant. The existence of a BT and the form 
of the differential equations [( 2. 3) and (2.4») are unaffect­
ed by linear transformations of z and z' (see Sec. II). Thus 
without loss of generality we may consider separately 
g = lIZ and g = lI(z +,u'i + v), ,u and v being constant. 
However, the latter means thath will involve the "In" func­
tion and remembering that 1= g'lgit is clear that (5.2) can­
not be satisfied. Hence g = 1 IZ and / must take the form 

/(z,z) = z In 'i + j('i) + k(z). (5.10) 

A similar argument gives 

/'(z','i') = z' In'i' + j' ('i') + k' (z') 

and hence 

I=zlz'. 

(5.11 ) 

(5.12) 

Equation (5.2) now gives thatj,j' are constants, which may 
be absorbed in k and k' (i.e., taken as zero). Also, from 
(3.12), 

n=O. (5.13 ) 

Finally, (3.19) gives 

k(z) =azlnz+,8z, k'(z') =az'lnz' +,8'z', (5.14) 

where,8 and,8' are complex constants, and from (3.17), 

x=i[zln ('iIZ') +azln (zlz') +z(,8-,8'»). (5.15) 

Equations (3.10)-(3.20) are now all satisfied. For this case, 
therefore, the partial differential equation (2.3) becomes 

izy +zxx +zln'i+azlnz+,8z=O, (5.16) 

which transforms under the BT 
ZX = (zlz')z~, 

z = (.!..-)z, + i[Z In ( 'i ) + az In (.!..-) + z(,8 - ,8') ] y z,y 'i' z' 
( 5.17) 
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to 

iz; + z~x + z' In'i' + az' In z' + ,8'z' = O. (5.18) 

Equation (5.17) can, in fact, be integrated to give 

z = z'F(y) , (5.19) 

where F(y) satisfies the first-order ordinary differential 
equation 

dF -
- = iCFln F + aFln F + (,8 - ,8')ji). 
dy 

(5.20) 

(b)/ii. =/; •. = O,h =l=O'/i· =1=0. Here/and/' now take 
the forms 

/=j(z) + k(z), (5.21) 

/' = fez') + k '(z'), 

and the conjugate of (5.2) becomes 

Ikz = lk~. 

(5.22) 

(5.23 ) 

Eliminating I it follows that whenh =1= 0 and/~ =1= 0, kz' k ~, 
and I II are all constant. Equation (5.3) and its conjugate 
now show thatjz andj~ are also constant so that this case 
leads only to linear forms of/and/'. 

(c)h =/i· = O. In addition to TI = Tl = 0, Eq. (3.14) 
and the conjugate of (3.13) give Tn = In = O. It then fol­
lows that Tlz = (Tl) z - I; = - I; and similarly 
Tlz = -/z/z, Tnz = - n)z, Tnz = - n)z' lnz = -Iznz, 
and lnz = -lznz. Equation (3.17) now gives, using 
(3.12), TX = iI(/. -/;.) and rx = O. Applying T to (5.3) 
and making use of these results shows that 

Ifzz - /;'z' = O. (5.24) 

Note thatlzz = 0 can be exluded since (5.24), again, gives 
both/and/' linear, and substituting for 1 into (3.11) gives 

Separating the variables, solving for fez) and /'(z'), and 
making linear transformations to z and z', without loss of 
generality (see Sec. II), we find that/(z) = az In z + ,8z and 
/'(z') = az' In z' +,8 'z', so that (5.24) gives 1 = zlz'. This is 
essentially a subset of the case 2(a) since in (5.16) it is possi­
ble to make scale changes in x and y to introduce a parameter 
coefficient of the z In 'i term, without otherwise changing the 
form of the equation. Setting this parameter to be zero gives 
the present case. The form of F(y) in (5.20) may, however, 
now be obtained explicitly. Summing up, 

izy +zxx + az Inz +,8z = 0 

transforms to 

iz; + z~x + az' In z' +,8' z' = 0 

under the transformation (cf. Ref. 8) 

z = z' exp [ yeiay 
- (,8 - ,8 , ) I a] , 

with y constant. 

VI. CASE 3: 1'~O, ,= 1 

(5.25) 

(5.26) 

(5.27) 

It is now convenient to introduce new independent vari­
ables 5, TJ, such that 

z = (5 + TJ)/2, z' = (5 - TJ)/2. (6.1) 

Equations (3.10)-(3.12) are now satisfied. Equations 
(3.15) and (3.16) reduce to T$ = Tl; = 0, so that 
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r= r('17,Tj). 

Equations (3.13) and (3.14) reduce to 

n~ =0, ns = -ir/2, 

so that n is of the form 

n = - irs 12 + im(l1,Tj). 

(6.2) 

(6.3) 

Equations (3.18) and (3.19) giveexpressionsforx~ andxs' 
respectively, which may be integrated to give 

X=!i[ -rr",st+2rm",t+ (-r+2rm7f 

- 2mr7f + 2mr",)s - 4A(11,Tj)), (6.4) 

A (l1,Tj) being an arbitrary function of 11 and Tj. 
lt only remains now to satisfy Eqs. (3.17) and (3.20). 

That is, suitable functions m(l1,Tj), A (l1,Tj), r(l1,Tj),f(Z,z), 
and/,(z',z') must be found so that these last two equations 
become identities in S, t, 11, and Tj. 

The first of these two equations (3.17) gives 

j(z,z) - /'(z',z') = S2PI + stP2 + sP3 + tP4 + P5 

= F(s,t,l1,Tj), (6.5) 

where 

PI = !rr7f' P2 = - ~rT"" P3 = mT", - mT7f' 

P4 = rm"" P5 = G(l1,Tj), (6.6) 

and where 

G(l1,Tj) = mm7f - mm", - mT/2 -A(l1,Tj). (6.7) 

The nature of the left-hand side of (6.5) imposes 
conditions on PI' P2, P3, P4, and P5 • Specifically, 
Fzz· = Fzz· = Fzz' = F zz' = 0 or 

~-~=~-~=~-~=~-~=Q 
(6.8) 

Hence 

PI = !TT7f = a l l1 + PI Tj + rl' 

P2 = - !rT", = 2P111 + r2' 

P3 =mT", -mT7f =a311+P3Tj+r3' 

P4 = rm", = P311 + P4·Tj + r4' 

Ps =G =Tj(PI112+r211+€I) 

+ jal 11
3 + rl11

2 + 02 11 + €2' 

(6.9) 

(6.10) 

(6.11 ) 

( 6.12) 

(6.13 ) 

where aI' a 3, PI' P3' P4' rl' r2' r3' r4' O2, €I' and €2 are 
constants. Note that once the functional form of F(s,t,l1,Tj) 
has been established,fand/' may be obtained directly from 
F, in terms of S, t, 11, and Tj, by the substitutions 

j _ F(S + 11) (t + Tj) (s + 11) t + Tj) + € _ € 
- 2' 2 ' 2 ' 2 3 2' 

(6.14) 

/'= _F(S-l1), a-Tj), (l1-S), (Tj-t»)+€3' 
2 2 2 2 

(6.15 ) 

where €3 ( = j(O,O» is an arbitrary constant and where €2 in 
(6.14) is the value of F( 0,0,0,0), obtained from (6.5) and 
(6.13 ). 

The remaining equation (3.20) may be written in terms 
of sand 11 as 
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E3 =0, 

where 

E3 = - T/, + n(xs + X7f ) + ii(X~ + X",) 

- x(ns + n7f) - i(n~ + n",) 

(6.16) 

( 6.17) 

and where T, n, X, and/, are given by (6.2), (6.3), (6.4), and 
(6.15), respectively. Direct calculation gives 

E3~~ = -P4(T+ r)/2, 

so that 

a l =0 

and 

P 4 = 0 or r = - T. 

With a l = 0, (6.9) integrates to give 

r = 8<Pll1Tj + rll1 + P(l1», 

where p( 11) is an arbitrary function of 11. Hence 

TT", = 4(P111 + P7f)' 

(6.18 ) 

( 6.19) 

(6.20) 

(6.21 ) 

(6.22) 

(6.23 ) 

Comparison of (6.23) and (6.10) and using I r hi = 1 shows 
thatp must be linear. Takingp(l1) =0111+03' (6.10) and 
(6.23) give 

T(Pll1 + r2/2) = - r(Pll1 + 81 ), 

where 

r = 8(P I11Tj + rll1 + 81 Tj + 83 ). 

(6.24) 

(6.25) 

Squaring (6.24), substituting for r from (6.25), and 
equating coefficients of different powers of 11 and Tj gives that 
P I must be real. In addition, conditions arise that may be 
conveniently separated into five discrete cases. The corre­
sponding forms of T( #0) are also given: 

(a) PI = 0, r2 = 0, 01 = 0, rl = 0, T constant; 

(b)PI=O, r2=0, 01 =0, rl#O, 

r=8(rI11+ 83); 

(c) PI =0, rl#O, r2 =2YI' 01 =rl> 

83 =03, r= -T, r=8(rI11+YITj+83); 

(d) PI = 0, rl #0, r2 #2YI' r2 Y2 = 4rl Yl> 

01 = (1/4)rzlrl> 

'£ _ (1/4)1103 _ 2,.y1 
u3 - rf ' T = - -:y;- , 

-2- 8( (l/4)11Tj '£). 
T - rll1 + + u3 , 

rl 

(e)PI=PI#O, r2=2YI' Ol=rl' 83 =03, 

r= -T, r=8(Pll1Tj+rI11+YITj+03)' 

In cases (b) and (d), r# - T, so that, from (6.21), P4 = O. 
For each of these five cases (6.12) may be integrated 

directly to give an expression for m ( 11, Tj) that will, of course, 
involve an arbitrary function of 11. Substituting T and minto 
(6.11 ) then leads to further constraints on the constants and 
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also specifies, in most cases, a more precise form of m. In 
summary, Eqs. (6.9)-(6.13) imply the following forms ofr, 
m, and G corresponding to cases (a)-(e) above: 

(a) r constant, 

m= QP41f+Y417)R+ V(71), V arbitrary, 

G = 17€, + 7162 + E2 ; 

(b) r = 8(Y,71 + ( 3), YI #0, 

m = - !r(a371 + Y3 )IYI' 

G = YI712 + 6271 + EI17 + E2 ; 

(c) r=8(YI71+YI17+63)' 63 real, 7= -r, 

m = - 7(YI (YI a 3 + 2y, a 3 )71 + YI (YI a 3 - YI a3 ) 

X17 - 263 (yla 3 - y l a 3 ) + 3itY4)/(12itYI)' 

G = 2Y'7117 + YI71
2 

+ 6271 + EI17 + E2 ; 

(d) r=8(Y,71+!rlWY, +(53), 7= -2ryI/Y2, 

m = - !r(a371IYI + 2y41Y2) + E6 , 

G = Y27117 + YI712 + 6271 + EI17 + E2; 

where 

_ E6 Y2 _ a 3 YI - -
E6 =--, a 3 =--, Y2Y2 =4y,y" 

Y2 YI 

- 0/4 )03 rl 
63 =---::--

ri 
Y3 = 2Y3 YI IY2' Y4 = - 4y, YI (2y, Y4 - Y2 Y3 )Irz, 

YI #0, Y2 #2y,; 

(e) r=8(/JI7117+YI71+YI17+03)' 7= -r, 

m = - !ra31/JI + E6 (/J,71 + YI ), 

G =/J171
2

17 + YI71
2 

+ 2Y,7117 + 02 71 + EI17 + E2 ; 

where /J 1,03, and E6 are all real, /J 1#0. 
In each case Eq. (6.5) enables F to be found in 

a form that is consistent with its representation 
F=/(z,z) - f'(z',z'). Here/andf' may be calculated using 
the substitutions given in (6.14) and (6.15). Of the original 
equations, (3.10)-(3.20), only (3.20), which was expressed 
earlier [see (6.16) and (6.17)] as E3 = 0, remains to be 
satisfied. 

Using the above results E3 may be expressed in terms of 
S, t, 71, and 17 and must be identically zero. Of the five cases 
above, three [( a), (b), and (d)] lead to no nonlinear forms 
of/(z,z). For case (b) direct calculation leads to 

(E3Ir)ss = - a 3, 

giving a 3 = 0, and then to 

(rE3 )51/1/ = - 4ri, 

leading to the contradiction YI = 0. 
For case (d), 

( rE3 ) 551/ = - 8y, a 3, 

so that, since YI #0, a3 = 0. Hence 

(rE3 )51/1/ = - 4ri, 
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giving, again, the contradiction YI = 0. 
In case (a), 

E3ss = !r V'1'1 , 

so that V( 71) is linear. Then 

E3'1'1'1'1 = 6/J41J~/(r7), 
giving /J 4 = ° and hence 

F= Y4t + 02 71 + EI17 + E2 , 

which leads only to linear forms forboth/(z,z) andf'(z',z'). 
Case (e) leads to the cubic Schrodinger equation. The 

identities (rE3) 5'11i = 0, (rE3) 5'1'1 = 0, (rE3 ) 5'1 = 0, and 
(rE3 )'11i = ° give in turn 

82 = O2 , 

E I = !(a~ + 4Yi )I/J" 
- - -2 2 

E2 = !(4/J, y I62 -4Ylri +Yl a 3)1/J" 

E3 = M8/J, y I62 + 4/J 1£2362 - 8y, Yi 
+ 2y, ai + 4Yia3 - a~a3 )I/J i· 

E3 is now identically zero. 
The forms ofj(z,z) and/' (z' ,z') may be calculated from 

(6.14) and (6.15), and these may be simplified by replacing 
zby z - !(2y, + a 3 )I/JI andz' by z' - H - 2y, + a 3 )I/JI' 
In addition, the constants involved may be simplified by set­
ting 

62 = J.l + !(4y, YI + a3a 3 )I/JI' 

03 = - !.B,A, + YI yl//JI' 

E6 =A21{31, 

where J.l. AI' and A2 are all real constants. With these substi­
tutions, 

/(z,z) = 4/J, ~z + J.lz, 

f'(z',z') = 4/J,z'2z' + J.lZ' 

and auto BT's for the equation 

izy + Zxx + 4{31 rz + J.lz = 0 

are given by 

p = p' + n, q = q' + rp' + X, 

where 

r = 4/J, (2(z - z') (z - z') - AI)' 

(6.26) 

(6.27) 

n = -!ir(z + z') + iA2 (z - Z'), 
(6.28 ) 

X = zA2rz + iJ.l(z - z') + zA I{31 (z + z') - zA ~ (z - z') 

+ 2i{3! (z - z')(zz' - zz + 2z'z'). 

This agrees with Lamb.4 

The only remaining case is case (c). Here, the identity 
( rE3 ) 51/'1 = ° gives 

a 3 = ± 2iy, 1/3. 

Considering a 3 = + 2iy] 1/3, the identities (rE3)5'1 =0, 
(rE3)5 =0, (rE3)'1'1 =0, (rE3)7J1i =0, and (rE3)7J =0 
give in turn 

EI = [/3YIy]82 -i(2itY4 + YiY4)]/(/3ri), 

E2 = !(rt~ - r] )/(~Yi), r] real, 
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82 = 82 , 

82 = i(ifr4 - ?Y4 )/(~rl YI)' 

CJ =! h ( - ~ + i) + ri ~ ( ~ + i) 

- 2i11~ ]/(~Tt?'). 
Now E J is identically zero. 

Herej(z,z),J'(z',z'), n, and X may now be calculated 
from (6.14) and (6.15). Their forms are considerably sim­
plified by first writing 

r4 =Ylrs(~-i)/rl' 
'I = - if? (8rsYs + 3'2), '2 real, 

8J =~[2~(rs +Ys) +6i(rs -Ys) -'5]' 

's real, 

i.e., replacing constants r4' '1' and 8J by constants r5' '2' 
and,s and then applying linear transformations to z and z' as 
follows: 

z--+~(~ - i)(~z - (rs + Y5 »/rl! 

z'_ -~ [z'(3+i~) +r5(~-i) +2Ysi]/rl' 
8 

The two partial differential equations then simplify to 

izy + Zxx + (z + Z)2 + '2 = 0, 

iz; + z~x + (z' + Z')2 +'2 = 0 

and the BT's relating them are 

p= -!(1+i~)p'+n, 

q = -!(1 + i~)q' + 7P' + X, 

where 

(6.29) 

(6.30) 

r=! [8~i(z+z') - (12-i~)(z+z') +'5(1-i~)], 

n = (7/36) [z(2~ - 18i) -z(2~ + 6i) +z'( - 8~ + 12i) -z'~ -'s (~+ i)], 
X = [ - 12r(1 + i3~) + 24zz(1 + i~) - 12z2(1- i~) - l2z,2(13 - i~) 

(6.31 ) 
- 96z'z'(2 - i~) - 12z'2(7 - i3~) - l2zz'(1 - i5~) - l2zz'(5 + i3~) 
- l2Zz'(7 + i~) - 1 2zz' ( 11 + i~) + '5( - 4z(6 - i~) - 4i~z 

+ 2z'(9 - i5~) - 2z'(3 + i~» + r; (1 + i~) - 108'2 (1 - i~) ]/(72~), 

where'5 is the Backlund parameter. 

For the case a J = - 2irl /~ the above may be fol­
lowed through in exactly the same way, arriving at the same 
partial differential equations. For the BT's, however, i 
should be replaced by - i where it occurs explicitly in the 
expressions for p, q, 7, n, and X above. We therefore have two 
different auto-BT's, each with an arbitrary parameter for the 
partial differential equation (6.29). 

These BT's incorporate auto-BT's for the Boussinesq 
equation since ifz = u + iv, Eq. (6.29) becomes 

iuy - Vy + U xx + ivxx + 4u2 +'2 = o. 
If this is separated into real and imaginary parts and v eli­
minated, u satisfies 
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Uyy + Uxxxx + (4u 2 )xx = 0, 

which is a form of the well-known Boussinesq equation. 
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This paper will show that the existence of at least three independent symplectic forms (related 
in a simple way) on the phase space of a dynamical system is a sufficient condition for the 
integrability of the system. 

I. INTRODUCTION 

The study of integrable models has been of much inter­
est recently. I These are nonlinear Hamiltonian systems that 
can be solved exactly and have been studied both from the 
group theory point of view as well as from the geometrical 
point of view. Most of the integrable models possess at least 
two Poisson bracket structures. 2

•
3 In such a case, one can 

construct an appropriate Nijenhuis tensor4 on the phase 
space and it is known from the studies in the geometric ap­
proach that the vanishing of the Nijenhuis tensor is a suffi­
cient condition for the integrability of the system. 5-7 

In this paper we give an alternate but equivalent charac­
terization of the integrability condition which may be more 
useful particularly in the study of continuum models. In par­
ticular, we show that the existence of at least three distinct 
symplectic forms (related in a simple manner) on the phase 
space of a dynamical system is a sufficient condition for inte­
grability. 

II. THEORY 

We begin by deriving some of the consequences of the 
vanishing Nijenhuis tensor on a manifold. Let Mbe a finite­
dimensional differentiable manifold and SET: M. In local 
coordinates S can be written as 

S=S;(x)~®dxP, fl,V= 1,2, ... ,dimM. (1) 
axv 

Clearly, therefore, S maps a tangent space to itself. We can 
now define a second tensor field Ns known as the Nijenhuis 
tensor field associated with S which, for any vector field X on 
the manifold, satisfies 

(2) 

Here, Lx is the Lie derivative with respect to the vector field 
X and the . stands for the contraction of a contravariant 
index with the first covariant index. Thus in local coordi­
nates 

(3) 

sn= (sn-I)'S=SA'S~''''SA ~®dxP. 
p, u-'axv 

It is clear that NsET~M and in local coordinates, it 
takes the form 

(4) 

where the Nijenhuis tensor N ~p (x) has the explicit form 

N~p = -N'Pa 

= S;aAS~ - S~aAS~ - S~ (aaS~ - apS;). (5) 

Note that when the Nijenhuis tensor vanishes, we have from 
Eq. (2) 

(6) 

for any vector field X on the manifold. It is now straightfor­
ward to show8

•
9 that if Ns = 0, 

Lx.sS n = (Lxsn) 'S, (7) 

Lx'S"S=(LxS)'S", (8) 

Lx.smS" = (LxS") ·sm. 

In particular, from Eq. (9) we see that 

Lx.susn = (LxS") ·S". 

(9) 

( 10) 

Combining this with the definition of the Nijenhuis tensor in 
Eq. (2), we conclude that if Ns = 0, then 

(11) 

Let us next assume that the manifold M is a special sym­
plectic manifold with two distinct symplectic forms: 

1= /pv (x)dxP A dxV, 

(12) 

By definition, these two-forms are nondegenerate and 
closed. Thus 

dl=O=dF. 

From the definition of the Lie derivative 

Lx = d·ix + ix·d, 

we then see that 

Lxi = dUx!), 

LxF = dUxF)· 

(13 ) 

(14) 

(15) 

Note that because the two-forms are nondegenerate, we 
can define the Poisson bracket structures IPv (x) and 
F pv (x) which are second rank antisymmetric tensors on the 
manifold and satisfy 

lpAhv =Iv../AP = 8:" 
FPAFAV = FVAFAP = 8:,. (16) 

This, in turn, allows us to define naturally a tensor field 
SET:M as 
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(17) 

Equivalently, we can think of the tensor field S as connecting 
the two distinct symplectic forms, namely, 

F= Sf (18) 

It is, in fact, clear now that with the help of the tensor field S, 
we can define a series of two-forms as 

F(n) = sn.J, n>O. (19) 

Proposition: If Ns = 0, then the sequence of two-forms 
defined by 

F(n) = sn.J, n>O 

are indeed symplectic forms. 10 

Proof: Note that the two-forms p<n) are automatically 
nondegenerate since both S; (x) andf.uv (x) are invertible. 
Thus, to show that the sequence oftwo-forms p<n) are sym­
plectic forms, we merely have to prove closure. 

We note that 

F(D) =J, 

F(1) =F, (20) 

both of which are closed two-forms. Let us next assume that 
up to some p < n, the two-forms are closed. Thus we assume 
that 

dF(P) =0, p<n. (21) 

Equivalently, 

LxF(P) = d(ixF(P». (22) 

Let us next note that 

i F(P) = (X·S).uF(P) dxv = XAS!-' F(p) dxv 
x·s !-'V A !-'V 

= X,S'F(P) =X·F(P+ I) = ixF(P+ I). (23) 

Consequently, using Eq. (22) we obtain 

Lx.sF(P) = d(ix.sF(P» = d(ixF(P+ I». (24) 

On the other hand, for 1 <p < n, 

Lx·sF(P) = Lx·s(S·F(P-I» 

= (Lx·sS) 'F(p-I) + S·Lx.sF(P-I) 

= (LxS) 'S'F(p-l) + S·d(ix.sF(P-Il) 

= (LxS) 'F(p) + S'd(ixF(P» 

= (LxS) 'F(p) + S'LxF(P) 

= Lx(S'F(P» = LxF(P+ I). (25) 

Here, we have used the relation in Eq. (6) which holds for 
Ns = O. Comparing Eqs. (24) and (25), we conclude now 
that 

LxF(P+ I) = dUxF(P+ I». (26) 

From the definition of Lx in Eq. (14), it now follows that 

dF(P+ I) = 0, (27) 

This shows that if the two-forms p<P - I) and P<p) are 
closed, then so is p<P + I) • Since p< D) and p< I) are known to 
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be closed, it follows through induction that the sequence of 
two-forms p<n) are all closed and, therefore, are symplectic 
forms. 

We are now ready to prove the main result of our paper. 
Proposition: Letf denote a symplectic form on the mani­

fold M. If there exists a tensor field SET: M such that S·f 
and S 2·f are closed two-forms, then 

Ns=O. 

Proof" By assumption, we have for any vector field X on 
the manifold, 

Lxf = d(ixj) , 

Lx (S'j) = d(ix(S'j), 

Lx (S2'j) = d(ix (S2'j). 

Using Eq. (24) we conclude that for n = 0,1 

Lx.s(sn'j) =Lx(sn+I'j). 

Explicitly, we note that 

Lx·s/= Lx (S'j) , 

Lx.s(S·j) = L X (S2'j). 

Let us next note that 

Lx·s(S·j) = (Lx·sS)·f+S·Lx.s/ 

= (Lx.sS),/+S·Lx(S·j). 

On the other hand, we have [using Eq. (30)] 

Lxs(S'j) = L x (S2'j) 

= Lx (S'S'j) 

= (LxS)·S,/+S·Lx(S·j). 

(28) 

(29) 

(30) 

(31) 

(32) 

Comparing (31) and (32) we see that for any vector field X 
on the manifold we have 

(Lx.sS)·f= (LxS)'S,! 

Equivalently, 

Lx-sS = (LxS) ·S. 

We conclude from Eq. (2) then that, in this case, 

Ns =0. 

(33) 

(34) 

Let us note in addition that an integrable system must 
have exactly n (dim M = 2n) conserved quantities. In the 
geometric approach this corresponds to the matrix S; hav­
ing exactly n nontrivial, doubly degenerate eigenvalues. 
Consequently, S; would be nonsingular for such a system 
and hence both S'fand S2,/would be symplectic forms on 
the manifold. 

This now proves the main claim of the paper. Namely, if 
the phase space of a dynamical system admits three distinct 
symplectic forms related by powers of SET: M, then the Ni­
jenhuis tensor associated with S vanishes. As it has been 
shown earlier, this is a sufficient condition for integrability. 
We now give two examples to bring out the usefulness ofthe 
above observation. 

Toda lattice: For the Toda chain with N points, it is 
known 7 that two symplectic forms can be written in terms of 
2N X 2N matrices as 
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-I)F =(A 
o I'V \.n -B) e ' p"v = 1,2, ...• 2N, (35) 

where the N XNblocks take the form 

A - s;: e-(QHI-Qi) _ s;: e-(Qj+I-Qjl 
ij - Ui+ IJ UiJ+ I , 

Bij =Pi~iJ' 

eij = E(j - i), iJ = 1.2 •... ,N, 

with 

{

I, 

E(j- i) = 0, 

-I, 

if j> i, 

if j= i, 
if jd. 

From this we can construct 

SV =F;.(j-I);'v=( B A) 
I-' I' -e B' 

A third two-form can now be defined as 

;. (BA + AB - B 2 + Ae) 
GI'V = S I'F;.v = _ eA + B 2 Be + eB . 

In components, 

G s;: P P ) -(Qi+I-Qi) 
ij=Ui+IJ( i+ i+1 e 

s;: (P P ) - (Qj+ I - Qj) 
- UiJ+ I j + j+ Ie, 

Gi•N + j = - GN + j •i 

_ ~ijP/ + E(j - i -l)e- (Qi+ I-Qi) 

-E(j-i+ l)e-(Qi-Qi-l) 

GN+i.N+j = (Pi +Pj)E(j-i). 

It is now quite straightforward to see that 

al' Gv;. + avG;.1' + a;. GI'V = O. 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

According to the main result of the paper, this implies that 
the Nijenhuis torsion tensor associated with S; vanishes 7 

and that the system is integrable. 
KdV: The dual Poisson bracket structures in this case 

are known to be2 

j-I=D 3 +j(Du+uD). 

F- 1 =D. (42) 

where u (x,t) is the dynamical variable and D represents the 
derivative operator with respect to the coordinate x. We can 
now construct 

S=Fj-1 =D2 +!u +!D -IuD, (43) 
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and. consequently, a third two-form associated with this sys­
tem has the form 

G=SF=D+!uD -I +!D -IU . 

In the coordinate basis. this takes the form 

G(x,y) = (YIG Ix) 

(44) 

= ~(x - y) + ~(X - y)(u(x) + u(y», ax 3 
(45) 

where we have used 

(yID -llx) =E(X-y) = -E(y-X) =(O(x-y) -no 
(46) 

It is now obvious that 

_~G_(.:....x.::.,y....:...) + ~G(y,z) + ~G(z.x) = 0, 
~u(z) ~u(x) ~u(y) 

(47) 

so that the two-form G is closed. It follows from the main 
result of the paper now that the Nijenhuis torsion tensor 
associated with the KdV system must vanish. The simplicity 
of this method should be contrasted with an explicit verifica­
tion of the vanishing Nijenhuis torsion tensor for the present 
case. 
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The discussion of the Hamiltonian structure of two-component equations of hydrodynamic 
type is completed by presenting the Hamiltonian operators for Euler's equation governing the 
motion of plane sound waves of finite amplitude and another quasilinear second-order wave 
equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of 
gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. 
Infinite sequences of conserved quantities for these equations are also presented. In the case of 
multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of 
the shallow-water equations admits bi-Hamiltonian structure. 

I. INTRODUCTION 

Historically, equations of hydrodynamic type I first 
arose as quasilinear second-order wave equations in 1 + 1 
dimensions. Equations of Euler,2 Poisson,3 and Born-In­
feld4 are examples of wave equations that can be written as a 
pair of first-order equations of hydrodynamic type. The 
equations of gas dynamics 

u , + UUx + vY -
2
v x = 0, V, + VUx + uVx = 0, (1) 

which are obtained from an Eulerian description of motion, 
provide the prototype of such equations. Recently, Ko­
damas has discussed the reduction ofthe dispersionless Ka­
domtsev-Petviashvili (dKP) equation that is based on the 
compatibility of first-order equations: 

u~ = A;';", 

U! = B ;u~ i = 1,2, ... ,n, (2) 

which are equations of hydrodynamic type in 2 + 1 dimen­
sions. 

The Hamiltonian structure of the equations of gas dy­
namics6-8 which, in particular, include the shallow-water 
equations,9,10 the Poisson,7 and Born-Infeld ll equations 
were discussed earlier. In this paper, we shall conclude the 
discussion of the Hamiltonian structure of these two-compo­
nent systems by presenting two further examples. First, we 
have Euler's equation 

'1'1/ - (1 + 'l'x)-(1+r')'I'xx =0, (3) 

governing the propagation of plane sound waves of finite 
amplitude and finally another quasilinear second-order 
wave equation 

'I' /I - e'" ''I' xx = 0, (4) 

which is related to a system considered in Ref. 8. Euler's 
equation results from a Lagrangian, whereas Eqs. (1) are 
obtained from an Eulerian description of motion. However, 
we shall show that, even though the equations of motion look 
quite different in different representations, they have the 
same Hamiltonian operators in common provided 

r+ r' = 2. 

We shall conclude by presenting the bi-Hamiltonian 
structure of the three- and four-component generalizations 
of the shallow-water equations that was proposed by Ko­
dama.s The derivation of the second Hamiltonian operator 
and proof of Jacobi's identities for multicomponent equa­
tions of hydrodynamic type consist of a generalization of the 
processes described in detail in Refs. 7 and 8. We shall as­
sume familiarity with these papers and present only the new 
results. 

II. GAS DYNAMICS HIERARCHY 

The equations of gas dynamics were shown to admit 
quadri-Hamiltonian structure:7.8 

U, = - JoE(H~) = - J I E(H~) 

- (l!r)J2E(H~I) = -J3 E(H v), r;60, 
(5) 

where u l = v,u2 = u are components of the vector U and E 
denotes the Euler operator, or the variational derivative with 
respect to u. The Hamiltonian operators Jj , i = 0,1,2,3 are 
skew-adjoint matrices of differential operators satisfying the 
Jacobi identities. The first three of these are first order and 
mutually compatible, whereas the last one is third order and 
incompatible with the rest. The bi-Hamiltonian structure is 
given by 

a 
Jo =O'ID, D=-, ax 

I ( vD+Dv 
J I =yWu+ (r-2)uD 

(6) 

(r- 2)Du + UD») 
vY- 2D + DvY- 2 ' r;60, 

(7) 

where 0'1 is the Pauli matrix. By Magri's theorem,I2 the re­
cursion operatorl3 

R = J I J 0- I (8) 

generates, in general, two infinite families of conserved 
quantities. (See Sec. V for a discussion of the exceptional 
case r = 2.) The third Hamiltonian operator is given by 
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( 

uvD + Duv 

J -
2- 1 vy- I 1 vy- I 

D[-U2 + ]+[_(y_2)U2 + ]D 
2 (y-1) 2 (y-l) 

We note that for the case of shallow-water waves, y = 2, this 
operator is trivially related to the earlier ones by 

( 10) 

but for a generic y, J2 is a new nontrivial Hamiltonian opera­
tor. Finally,14,8 we have the fourth Hamiltonian operator 

J3 = DU x- IDU x- 10"1 D, 
where 

U=(v
yU

_
2 

:) 

y-2 
and this gives rise to the first-order conserved density 

(11) 

(12) 

H v = vJ(u; - vy- 3V;), (13) 

which is due to Verosky.15 
Equations of polytropic gas dynamics admit the follow­

ing two sequences of conserved densities: 

H ~ I = yv, H ~ = uv, 

H~=!u2v+vYly(y-l), y~O,I, 

H~ = !u3v + uvYly(y - 1), 

(14) 

E 1 4 u2vY v2y - I 
H3 =-u v+ + , 

24 2y(y- 1) 2y(y- 1)2(2y- 1) 

H~=u, 

HT = !(y- 2)u2 + vy-l/(y- 1), 

H~=!(y-2)U3+UVy-I/(y-1), 

L 1 4 1 u2vY - I 
H3 =-(y-2)u +----

24 2 2(y- 1) 

(15) 

with superscripts E and L denoting the Euler and Lagrange 
hierarchies, respectively, The recursion operator keeps the 
two hierarchies separate. 

It is the third conserved quantity in the Euler hierarchy 
H ~ which acts as the Hamiltonian function for various phy­
sically interesting quasilinear wave equations. The excep­
tional case y = 1 where 

(16) 

corresponds to Poisson's equation in nonlinear acoustics, 
while y = - 1, which is also known as Chaplygin gas, yields 
the Born-Infeld equation and classical shallow-water equa­
tions are obtained for y = 2. The first nontrivial conserved 
quantity in the Lagrange hierarchy H T has not played a role 
in the equations that were discussed earlier. 
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[ 1 y- I] [1 y- I ] ) D _(y_2)u2+ V + _u2 + v D 
2 (y-l) 2 (y-l) 

, 
uvy- 2D+Duvy- 2 

(9) 

III. EULER'S EQUATION 

In 1757, Euler considered finite amplitude plane sound 
waves and obtained the quasilinear second-order partial dif­
ferential equation (3) where '11 (x,t) is the displacement in a 
Lagrangian description of motion. This equation has been 
the subject of extensive classic investigations. 16 We shall 
now show that the second-order equation which results from 
the use of the Hamiltonian function H T in the Lagrange 
hierarchy is precisely Euler's equation. 

Equation (3) is a member of a class of completely inte­
grable nonlinear wave equations which admits infinitely 
many conservation laws. 17 Thus, through the introduction 
of a new potential <1>, Euler's equation can be realized as the 
integrability condition of a first-order system according to 
the formalism of Refs. 7, 17. Such a system is given by 

'11, = <l>x' 

and using the velocity fields 

u = cf>x, 

V= 1 + 'I1x' 

we find the evolution equations 

u, = v- (I +y')vx' 

(17) 

(18) 

(19) 

which belong to the class of equations of hydrodynamic 
type. Equations (19) admit primary Hamiltonian structure 

0, = - (lIy')JoE(Hf) (20) 

with Hamiltonian density 

HT= -!y'U2 +v l -r'I(1-y'), y'=rf0,1, (21) 

and comparison with Eq. (15) leads to the identification 

y + y' = 2. (22) 

The choice of the velocity fields in Eqs. (18) and the identifi­
cation (22) were designed to cast Euler's equation into a 
form whereby its bi-Hamiltonian structure is manifest. Thus 

0, = - (lIy')JoE(Hf) = [y'I(y' - 2)]JIE(H~), 
(23) 

where the Hamiltonian operators are identical to those given 
in Eqs. (6) and (7). It is not possible to extend the recursion 
relation beyond this because H ~ I is not defined. On the 
other hand, using the recursion operator we can construct 
the next completely integrable equation: 

'11 + 1 '11 + [ 1 - 3y' 
tt y'(1 +'I1x)r' x, y'2(1_y') (1 +'I1x)2r' 

- '11 =0 2'11, ] 
(1+'I1

x
)I+r' xx , (24) 

H. GUmral and Y. Nutku 2607 



                                                                                                                                    

for which the first Hamiltonian function is H ~ and we can 
therefore extend the recursion relation to include J2• The 
third-order Hamiltonian operator J3 exits for all of these 
equations. Quasilinear wave equations in the hierarchy of 
Euler's equation admit quadri-Hamiltonian structure. The 
first three Hamiltonian structures of Euler's equation were 
obtained by Kupershmidt lS using a different approach. 

IV. THE EQUATION 'l!tt=e'f!x 'l!xx 

In our discussion of the multi-Hamiltonian structure of 
Euler's equation we have introduced the first-order system 
( 17) which is not defined for 1" = O. On the other hand, the 
resulting equations of hydrodynamic type (19) are defined 
for all 1" but they are not bi-Hamiltonian in the exceptional 
case 1" = O. This gap is filled by Eq. (4) which is obtained by 
an interchange of the roles of x and t in Euler's equation for 
1" =0. 

We consider the first-order system 

ct>/ = e'l>x - 1, 

'II/ =ct>x' (25) 

the integrability conditions of which result in Eq. (4) for the 
potential'll, while ct> satisfies 

ct>xx - (1 + ct>/) - Ict>// = 0, (26) 

which is precisely Euler's equation for 1" = 0 with the roles 
of x and t interchanged. Defining the velocity fields u = ct> x 

and v = 'II x we obtain the hydrodynamic system 

(27) 

which are quadri-Hamiltonian equations of hydrodynamic 
type. The bi-Hamiltonian structure is defined by the opera­
tors Jo = Jo and 

A (evD+De
V 

UD). JI = 
Du 2D 

(28) 

The third Hamiltonian operator 

A _ ( uevD + Duev (~U2 + eV)D + DeV) 
J2 - , 

eVD + D(eV + !u2) uD + Du 
(29) 

which is trivially related to the first two was obtained ear­
lier.s These operators are compatible. There is also a third­
order Hamiltonian operator for Eqs. (27) 

(30) 

(31) 

which is incompatible with the rest. These equations admit 
the first-order conserved density 

'" 2 v 2 H = vJ(ux - e vx ), (32) 

which is analoguous to Verosky's result. 
'" A The recursion operator R = J I J 0- I generates infinitely 

many conserved quantities the first few of which are 

2608 

"'E "'L "'L 2 v H _ 1 = v, H 0 = u, HI = ~u + e , 

iH = ju3 + 2uev, iH = !u4 + 3u2eV + ie2V, 

H~ = !u5 + 4u3ev + 6ue2v, ... (33) 
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Apart from the first one all the conserved quantities in this 
sequence are related to those in the Lagrangian sequence of 

'" generalized gas dynamics. The recursion operator R when 
'" applied to the conserved density H ~ I in the Eulerian se-

quence generates the analog of the Lagrangian sequence. 
This situation is in agreement with the fact that the two se­
quences of conserved quantities for gas dynamics become 
identical7 to the Benney sequence l9 when r = 2, which cor­
responds to 1" = 0 for Euler's equation. 

V. FURTHER CONSERVED QUANTITIES FOR 
SHALLOW-WATER EQUATIONS 

Two-component equations of hydrodynamic type admit 
conserved quantities that satisfy a linear second-order pde in 
two variables. 17 From general theory we know that the solu­
tion of such an equation contains two arbitrary functions. 
Indeed, for a generic r the two infinite families of conserved 
Hamiltonians of the Eulerian and the Lagrangian sequences 
form a complete set in terms of which we can express these 
arbitrary functions. However, it was already noted in Ref. 7 
that for the case of shallow-water waves (r = 2) these two 
sequences are no longer linearly independent and we have 
just seen above that the same phenomenon occurs for 1" = O. 
This degeneration of the Eulerian and the Lagrangian se­
quences into one, namely, the Benney sequence, results in 
the loss of an arbitrary function. Thus for r = 2, or 1" = 0 we 
are missing an infinite set of conserved quantities. 

Possible end/starting elements of such a missing se­
quence of conserved quantities are the Casimirs C which 
satisfy 

(34) 

and for shallow-water equations we find that these distin­
guished functions are given by 

(35) 

and u itself. For the nontrivial Casimir (35) simple waves 
satisfying 

(36) 

form a dividing line in the discussion which follows and ap­
propriate restrictions must be imposed in order to insure that 
the arguments of the square roots are positive. The Benney 
sequence and the Casimirs can be obtained in various limits 
of Manin's generating function20 

(37) 

for conserved quantities satisfied by the shallow-water equa­
tions. We have the following infinite sequences of conserved 
quantities which include the non-trivial Casimir 

'" --+ U --+~U2 _ 4v--+0, u2 - 4v>0, 
~U2 - 4v 

(38) 

which was pointed out in Ref. 21 and 

0--+~4v - u2 

--+4v sin -I(~) + u~4v - u2 + "', u2 
- 4v<0, 

2.[v 
(39) 

H. GUmral and Y. Nutku 2608 



                                                                                                                                    

where the arrow indicates the sense of the recursion opera­
tor. Once again8 J IJu acts as the inverse of the recursion 
operator. 

Simple waves subject to Eq. (36) also play an exception­
al role in Miura transformations. For equations ofhydrody­
namic type Miura transformations reduce to coordinate 
transformations which bring the flat metric I defined by the 
second Hamiltonian operator ofEq. (7): 

d~ = (v-!U2 )-I(vdu2 -ududv+dv2) (40) 

into canonical form. That is, 

dsi =dfl2 + Edii, E= ± 1 (41) 

and in terms of u and ii the second Hamiltonian operator has 
constant coefficients which is the effect required of Miura 
transformations. This transformation is given by 

u=u, 

_ {~U2 - 4v, 
V= 

~4v - u\ 
(42) 

which results in either a Euclidean or a Lorentzian signature 
for the metric. Dubrovin and Novikov l have remarked that 
the only non-trivial invariant that a flat metric can admit is 
its signature. But this statement must be accompanied by the 
warning that it is not sufficient to know the form of the met­
ric in one particular coordinate system in order to determine 
its signature. The metric may contain apparent singularities 
and this will put restrictions of the domain of coordinates for 
which it is going to be valid. The signature cannot be deter­
mined without reference to these domains. The flat metric 
defined by the second Hamiltonian operator for shallow­
water waves is a case in point because the Jacobian of the 
Miura transformation vanishes when Eq. (36) is satisfied. 

I 

vD+Dv w 
wD+D-

2 

VI. KODAMA'S GENERALIZATION OF SHALLOW­
WATER EQUATIONS 

Kodamas has shown that the reduction of the dKP 
equation which results in the shallow-water equations leads 
to the following generalization for a three-component field 

( :) = (~ : :X:) 
Ut 00 U Ux 

(43) 

which are equations of hydrodynamic type. They admit an 
infinite sequence of conserved Hamiltonians 

H _ I = 2v, Ho = uv + !w2, 

HI = ~(U2V + v2 + uw), 

H2 = !u3v + ~UV2 + §U2W2 + §VW2, ... , (44) 

analoguous to the Benney sequence for shallow-water 
waves. Kodama has further noted that his equations can be 
written in Hamiltonian form 

Ut = JoE(HI ), 

where 

o 
D 
o 

(45) 

~) (46) 

and U = (v,w,u) in that order. We shall now show that Ko­
dama's equations admit bi-Hamiltonian structure. 

We shall seek a second Hamiltonian operator for Eqs. 
( 43) using a procedure similar to that presented in Ref. 7 for 
two component equations. Since the calculations are 
straightforward and lengthy we shall only present the re­
sults. The second Hamiltonian operator for Kodama's equa­
tions is given by 

uD 

1 w 1( V2) 1( V2) "'::""'D J I = -D+Dw - 2u-- D+D- 2u-- (47) 
2 2 4 w 4 w 2w 

Du ~ 
2w 

and it can be verified that this expression for J I satisfies the 
Jacobi identities and is compatible with Jo. The recursion 
operator for this bi-Hamiltonian system generates the infi­
nite sequence of conserved Hamiltonians obtained by Ko­
dama starting with v. But, in addition, there is an infinite 
sequence of conserved quantities starting with w: 

H~ =W, 
1 1 v2 

Hi =-uW+--, 
2 4 w 

3 3 3 uv2 1 v4 

H~ =-u2w+-vw+------, 
8 4 8 w 32 ~ 

2609 J. Math. Phys., Vol. 31, No. 11, November 1990 

.l..D 
2 

, 5 3 15 5 3 15 U
2

V
2 5 uv4 

H3 =-u w+-uvw+-w +------
16 8 16 32 w 64 w3 

5 v3 1 v6 

+--+----, 
16 w 128 w5 

(48) 

Thus we have two infinite families of conserved Hamilto­
nians for the three-component Kodama equations, which 
are rational functions. However, we are missing an infinite 
family of conserved quantities. 

As in our earlier discussion of the conservation laws for 
the classical shallow-water equations, the missing infinite 
sequence of conserved quantities must include the Casimir. 
For the Hamiltonian operator (47) we find that 
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(49) 

is the nontrivial Casimir. Once again u is also a Casimir. 
Finally, we note that the four-component form of Koda­

rna's equation 

(:) =(~ ~ : :x:) 
Ut 100u Ux 

(50) 

is also a bi-Hamiltonian system with 

J, ~G ~ ~ 1) (51 ) 

and 

~6VD+3V' 5rD + 2rx 4sD+sx 
3UD) J

1 
= 1 5rD+ 3rx 4mD+2mx 3nD+ nx 2pD 

6 4sD+ 3sx 3nD+ 2nx 2qD+ qx (r/s)D ' 
(52) 

3Du 2Dp D(r/s) 4D 
where 

(53) 
vr 2 YJ 

n=u--+--I" 3 ~ , 

q = v/s - ';'/1". 

The n-component Kodama equations are evidently also bi­
Hamiltonian but the explicit expression for the second Ham­
iltonian operator is rather involved. 

We note that in Kodama's equations (43) the limit 
w-+O is well defined and yields the classical shallow-water 
equations ( 1 ) with r = 2. However, we have found that this 
limit is not defined for the second Hamiltonian operator 
( 47) of Kodama's equations. Thus it is not possible to obtain 
the Hamiltonian operatorofEq. (7) starting from Eq. (47). 
Similar remarks apply to the four-component Kodama 
equations (50) as well. This may seem surprising at first 
sight, indeed it was the source offailure of early easy guesses 
for the possible bi-Hamiltonian structure of Eqs. (43), but 
the nonexistence of the w -+ 0 limit in Eq. (47) can be traced 
back to the following: There is a dimensional reason for the 
appearance of inverse powers of w in the second Hamilto­
nian operator J 1 for Kodama's equations. In the n-compo­
nent Kodama equations the variables {uJ, i = 1,2, ... , n car­
ry the dimension 

[ui
] = (2n -1- i)/(n -1) (54) 

and this results in the requirement that the i, k entry of the 
Hamiltonian operator must have the dimension 

[Jik] = (2n-i-k)/(n-l). (55) 

So we must start with an Ansatz for the entries of J ik with 
the appropriate dimension (55) but if we were to exclude 
terms containing the inverse powers of some of the variables 
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in this Ansatz, it can be verified that the Jacobi identities 
cannot be satisfied. The results presented in Eqs. (47) and 
(52) for the second Hamiltonian operators of Kodama's 
equations (43) and (50) satisfy these dimensional consider­
ations and the Jacobi identities. 

VII. CONCLUSION 

We have shown that Euler's equation governing the 
propagation of plane sound waves of finite amplitUde can be 
cast into the form of two-component equations of hydrody­
namic type. The first Hamiltonian function of this system 
can be identified with the first conserved quantity in the La­
grangian sequence of gas dynamics. The quadri-Hamilto­
nian structure of gas dynamics can therefore be carried over 
t~ Euler's equation. We have further shown that the quasi­
hnear second-order wave equation (4) also admits quadri­
Hamiltonian structure. 

Th.e multi~ Hamiltonian structure of equations of hydro­
dynam1c type 1S a remarkably rich subject as the results re­
~or:ed in Refs. 7, 8, and 11 together with this paper will 
lDd1cate. But so far we have mostly considered two-compo­
nent equations and only begun to investigate the multicom­
ponent case by exhibiting the bi-Hamiltonian structure of 
~odama's equa~ions generalizing the shallow-water equa­
t~ons. The Hamiltonian structure of multicomponent equa­
tlOns of hydrodynamic type which are obtained from differ­
ent reductions of the dKP equation requires further 
investigation. 
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The soliton solution to the hierarchy of two-dimensional nonlinear evolution equations related 
to the Zakharov-Shabat spectral problem (including the Oavey-Stewartson equation) are 
derived and studied. The solitons are localized two-dimensional structures traveling on straight 
lines at constant velocities. Their spectral transform is not uniquely defined and this point is 
discussed by giving two explicit different spectral transforms of the one-soliton solution and 
also by giving the general dependence of the spectral transform on the definition of the basic 
Jost-like solutions. 

I. INTRODUCTION 

Since the discovery that the inverse spectral transform 
can be formulated as a "(j problem" a large class of nonlinear 
evolution equations in two spatial dimensions have been lin­
earized. I-9 These equations are generally integrodifferential 
equations and some of them are physically relevant equa­
tions. For the purpose of this paper, we consider as prototype 
the Oavey-Stewartson (OS) equationslO 

iQ, = -~U3(Qxx +a2Qyy) +U3Q 3 + [Q,A], 

(ax +au3ay )A=a(Q2)y, a 2 = ±1 0.1) 

and the two-spatial dimensional analog of the modified KdV 
(20MKdV) equationll .

12 

Q, = !Qxxx + aa2QXYy - ~Q2Qx - ~0'3[Q,A ]x 

- aa{Qy,A} + HQ,B], 

(ax +au3ay )A =a(Q2)y, 

(ax + au3ay )B = -au3[Qxy,Q), a 2= ± 1. 0.2) 

The 2 X 2 matrix field Q is off-diagonal 

Q = (0 q(X,y,(»), 
r(x,y,t) 0 

(1.3 ) 

while the auxiliary 2 X 2 matrix fields A and B are diagonal. 
The OS equations have been first derived by the method 

of multiple scales 10 for describing the propagation of two­
dimensional nonlinear waves in dispersive media (strong 
nonlinearity and weak dispersion). It turns out that from 
both physical and mathematical point of view, the sign of a 2 

is critical (a = 1 is DSI and a = i is DSII). 
The spectral transform of the OS and 2DMKdV equa­

tions is obtained from the spectral problem 

(ax + au3ay + Q)t/! = 0, 0.4) 

which generalizes the Zakharov-Shabat spectral problem to 
two-spatial dimensions. 

However, as far as we know, only recently it has been 
realized ll

•
12 that the second nonlinear equation in the hier­

archy related to the Zakharov-Shabat two-dimensional 
problem can be written in the simple form (1.2), making 

evident that it is a two-dimensional analog of the mKdV 
equation. We hope that in this form it will be easier to find 
interesting phYSical applications. 

Both equations, OS and 2DMKdV, admit the reduction 

r= Eq, EER, ( 1.5) 

where the bar means complex conjugate. 
In two previous papers,II.12 we showed, together with 

Martina, that both equations in the hyperbolic case (a = 1) 
admit two-dimensional soliton solutions (exponentially lo­
calized spatial structures moving with constant shape and 
velocity). Therefore, we claim that DS and 2DMKdV equa­
tions must play the same fundamental role in the theory of 
integratable systems in 2 + 1 dimensions as in 1 + 1 dimen­
sions the nonlinear Schrodinger (NLS) equation and the 
modified KdV (mKdV) equation (to which they reduce 
when Qy=O). 

In this paper, we give the most general soliton solution 
for the DSI and the 2DMKdVI equations. The one-soliton 
solution is obtained by using the Backlund gauge transfor­
mation. 13 It is possible to build the two-soliton solution by 
means of the nonlinear superposition formula. This has been 
done in Refs. 11 and 12 for a particular choice of the param­
eters. Our purpose here is to focus on the soliton solution in 
the context of the spectral transform and we report the study 
of the general two-soliton solution to future work. 

The Backlund gauge allows us to derive also the eigen­
function t/!(x,y,k) of the corresponding spectral problem 
( 1.4 ). Once fixed, the normalization of t/! according to the 
following asymptotic behavior: 

t/!(x,y,k)e- ik(C7,X-y) = I + O(lIk), as k-- 00, (1.6) 

the spectral transform R (k,/) of Q(x,y) is defined as the 
measure of departure from analyticity of t/!(x,y,k) as fol­
lows: 

at/! f f -ak (x,y,k) = dlAdl t/!(x,y,I)R(k,I). ( 1.7) 

However, the normalization condition (1.6) does not 
fix the boundary conditions in the (x,y) plane. Any possible 
different choice of boundary conditions in the (x,y) plane 
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corresponds to different disjoint classes of spectral data 
R (k,l). We shall prove, however, that any admissible choice 
of boundary conditions in the (x,y) plane still produce a a 
problem in the form (1.7). In particular, we show that, for 
the one soliton solution, if one chooses as boundary condi­
tions for ¢(x,y,k) those naturally suggested by the Backlund 
gauge, ¢(x,y,k) has a simple pole in the complex k plane. On 
the contrary, if one chooses the boundary conditions pro­
posed by Fokas and Ablowitz l4 the corresponding eigen­
function ¢(x,y,k) has only a discontinuity on the real k axis 
(no discrete spectrum) also for the pure one-soliton solu­
tion. We shall compute this particular solution ¢ (the one 
analytic in the upper complex k plane) and show that it has a 
continuation in the lower half plane where it has an infinite 
set of simple poles accounting for the presence of the one­
soliton solution. 

II. HYPERBOLIC SYSTEMS IN THE PLANE 

Let us consider the hyperbolic 2 X 2 Zakharov-Shabat 
spectral problem in the plane 

q(X,Y») 
o ' 

(2.1) 

The complex spectral parameter k is introduced by seek­
ing matrix eigenfunctions ¢(x,y,k) that are normalized as 
follows: 

¢(x,y,k)e-ik<U,X-Yl = 1 + O(l/k), (2.2) 

as k -+ 00 and are bounded in the (x,y) plane. For Q(x,y) -+ 0 
rapidly enough for large (x,y), the matrix 

v(x,y,k) = ¢(x,y,k)e-ik<U,X-Yl (2.3) 

satisfies the integral equation 

v = Vo - IX dx' exp[ik(x - X')0"3] (qV
21 

QV
22

)(X"y - (x - X')0"3) 
- 00 0 YVI2 

xexp[ -ik(x-x')0"3] + Loo dX'exp[ik(X-X')0"3](~1 ~)(X"y- (X-x')0"3)exp[ -ik(x-x')0"3], (2.4) 

for 1m k> 0 and 

v = Vo - IX dx' exp[ik(x - X')0"3] (QV
21 

0 )(X"y - (x - X')0"3) 
- 00 YVII YVI2 

xexp[ - ik(x - X')0"3] + Loo dx' exp[ik(x - X')0"3](~ Q~22 )(X',y - (x - x')0"3)exp[ - ik(x - X')0"3], (2.5) 

for Imk<O, where, for any matrix M(x), M(y 
- (x - X')0"3) denotes the matrix obtained from M(x) by 

evaluating the lth row aty - (x - x') (0"3)" and where 

(
al(X-y,k) 0) (2.6) 

Vo= 0 a2(x+y,k) , 

with a i arbitrary functions. The matrix Vo is subjected to the 
sole requirement that Vo-+ 1 as k-+ 00. 

In the papers by Fokas and Ablowitz,14 Vo has been 
chosen to be equal to 1. This choice seems to be the more 
convenient one for showing that the nonlinear evolution 
equations associated to (2.1) are linearizable. However, we 
show that this choice may not be convenient if one is interest­
ed in finding special solutions. 

Once vo(x,y,k) chosen, the matrix spectral transform 
R (k,l) is defined as the measure of departure from analytic­
ity of ¢(x,y,k) as follows: 

:t (x,y,k) = J J dl/\dl¢(x,y,I)R(k,I). (2.7) 

If one supposes, as is generally admitted, that R (k,l) 
determines uniquely ¢(x,y,k) then the same Q possesses dif­
ferent spectral transforms R (k,l) corresponding to different 
choices of Vo' 
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In order to define the spectral transform of Q when Vo is 
not equal to 1, it is convenient to work with the eigenfunc­
tions ¢< ± ) (x,y,k) solutions of the following integral equa­
tions (kER): 

¢< + ) (x,y,k) = voeik(U,X-Y) - J: 00 dx' 

Q'l'22, , .1.< +») 
< +) (x ,y - (x - x )0"3) 

r¢12 

+ LOO dX'(r¢~+) ~)(X"y - (x - X')0"3) 

'* voeik (u,x - y) + G ~y+ l¢< + l (k), (2.8) 

¢<-)(x,y,k)=voeik(u,x- y)_ J:oo dx' 

(
Q¢il- l 0) 

X ... 1.< _ ) < _) (x',y - (x - x') 0"3) 
, 'I'll r¢12 

L
oo (0 Q¢i2-») , , 

+ X dx' 0 0 (x ,y - (x - x )0"3) 

'* voeik (u,x - y) + G ~y- l¢< - l (k). (2.9) 
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The advantage of working with .p instead of v is that the 
integral operators G ( ± ) are k independent. Through a con­
venient factorization, the discontinuity of r/J on the real k axis 
obeys the following equation: 

{.p( + ) (x,y,k) - r/J( - ) (x,y,k)} 

f
+ 00 

= _ 00 dm eim[u,x-Y1S(k,m) 

+ G ~y- ){r/J( + )(k) -.p( - )(k)}, (2.10) 

where 

21T'S(k,m) = f-+oo"" dx f-+",,"" dye-im[u,x-Yl 

( 
0 - q.p~t ) (x,y,k») 

X () .(2.11) 
nPl1+ (x,y,k) 0 

To obtain (2.10), it is necessary to use the identity 

21T'M(x',y - (x - x') 0'3) 

== f_+ooOO dy'f_+oo" dm e-im[y- (X-X')U,-y'IM(x',y'), 

(2.12) 

where M is a generic 2 X 2 matrix. The next step consists in 
multiplying (2.9), written for k = m, by some matrix 
Rc (k,m) (the sUbscriptc stands for "continuous") and then 
integrating over m. The resulting equation can be written 

f-+.," dm r/J( - ) (x,y,m)R c (k,m) 

(2.13) 

if we choose Rc (k,m) according to 

J....S(k,m) = f+" dl N(1,m -/)Rc (k,m -I) (2.14) 
2 -00 

(note that we have commuted G ( - ) with the integral over 
m), where N is the Fourier transform of the arbitrary func­
tion Vo described in (2.6), namely 

vo(x,y,k) = f_+oooo dle il [u,x-YW(1,k). (2.15) 

The final step consists in comparing (2.10) with (2.13) 
to conclude that, if the honogeneous integral equation has 
only the trivial solution, then 

(2.16a) 

For Vo = 1, we obtain N(l,k) = 8(/) and then Rc = S in 
agreement with. \4 For other choices of vo, or equivalently 
other choices of N(1,k), the direct spectral problem (con­
struction of Rc from Q) requires the solution of (2.14) to 
obtain Rc from S. 

Note that the spectral transform R defined in (1.7) is 
obtained from Rc by 

2614 

R(k,/) = 8(kl )8(1/ + O)Rc (kR,IR ). (2.16b) 

The time evolution of Q (for a convenient choice of vo) 
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can be fixed by introducing the 2 X 2 matrix dispersion rela­
tion O(k,t) and by requiring that the spectral transform 
R(k,/) evolves as 

R,(k,l,t) = R(k,l,t)O(k,t) - o (l,t)R (k,I,t). (2.17) 

A very general choice for 0 and the related evolution 
equations have been given in Ref. 15. Here, we are interested 
in the case 

(2.18 ) 

with w (k) a polynomial in k satisfying the additional condi­
tion 

w(k) = - w(k). (2.19) 

This condition ensures that the linear approximation of 
the considered equations does not blow up at large time. 

The nonlinear evolution equation satisfied by Q(x,y,t) is 
obtained by seeking an auxiliary spectral operator (the sec­
ond operator in the Lax pair) of the form 

T2 = a, + v, (2.20) 

where V = V(x,y,t,ay ) is a polynomial in the differential op­
erator ay • Here T2 commutes with T\: 

[T2,Ttl = 0, (2.21) 

and satisfies the equation 

(2.22) 

The two prototype equations, DSI and 2DMKdVI, giv­
en in the Introduction are obtained by choosing, respective­
ly, 

w(k) = ik 2 

and 

w(k) = ik 3. 

In the first case, 

iV = 0'3a; + Qay - !0'3Qx + !Qy - !0'3Q 2 + A, 

and, in the second case, 

with 

V= 0'3a; + Qa; + v\ay + V2, 

VI = - !0'3Qx + Qy - !0'3Q 2 + ~, 
V2 = !Qxx + Qyy - !0'3Qxy - !Q 3 

-l0'3[Q.A] - HQ,Qx] - !0'3QyQ 

+ iAy + l0'3[Qy,Q] + lB. 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

III. BACKLUND GAUGES AND SOLITON SOLUTIONS 

The simplest gauge transformation, B = B( Q' ,Q), 
which generates the Backlund transform Q' of Q (see Ref. 
13) is given by the equation 

B(Q',Q) = aay - !0'3(Q'a - aQ) 

- !0'3a/,(Q,2 - Q2) + b. (3.1) 

The operator /' = (ax + 0'3ay) -I is defined with the 
boundary requirement that, in a given direction, 
lim /' M = 0 for any diagonal (well behaved at infinity) 
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matrix M = M(x,y). Here, a,b are 2X2 constant diagonal 
matrices. 

For a = (~g), b = (~?) we get the so-called elementary 
Backlund gauge of first kind B(I)(Q',Q;.1) for a= (g?), 
b = (~~) the elementary Backlund gauge of second kind 
B(II)(Q',Q;ft) and for a= (~?), b= (~~) the Backlund 
gauge B( Q' ,Q;A.,ft) which generates the soliton. 

We are interested in the solution Q that can be derived 
by comparing two elementary Backlund gauges and by start­
ing from the zero solution. The main property to be used is 
the commutativity of Backlund gauges that is given in the 
specific case by the formula 

B(Q,O;.1,ft) = B (lI)(Q,Q(I);p)B (I)(Q (1),0;.1) 

= B (I) (Q,Q (l1);A.)B (II) (Q (Ii) ,O;p). (3.2) 

It results that l5 

Q(I) = ( 0 
r(1) ~). Q (II) = (~ q(lI») 

o ' 

where 

r(1) =p(x + y,t)e-A.(X- Y), 

q~II) + (A. _ p )q(lI) 

q = 1 + (1/4 )r(l)q(II) , 

with 

(3.3 ) 

q(lI) = 7J(x - y,t)eI'(x+y), 

(3.4 ) 
r(1) - (A. - p)r(l) 

r- Y (3.5) 
- I + (1/4 )r(l)q(lI) , 

p(x + y,t) = J J dll\ dl e - i1(x +Y)p(/,t) , 

7J(x-y,t) = J J dll\dleil(X-Y)r,(/,t). (3.6) 

The time evolution is given by the equations 

p(/,t) = p(/,O)exp[m(/)t + m( - iA)t], 

r,(I,t) = r,(/,O)exp[ - m(/)t - m( - ip)t], (3.7) 

where p (/,0) and r, (/,0) are arbitrary functions. The explicit 
form of B( Q,O;A.,p) is 

B( Q,O;A.,p) = lay + B (I) (Q,O;.1,p) , 

B (I) (Q,O;.1ft) = ~(ll) • (

A. - !r(l)q _ Iq ) 

!r ft -!q r 
(3.8) 

By applying the gauge operator B( Q,O;.1,ft) to 
eik(u.x - Y), we get the following eigenfunction relative to Q in 
(3.3 ) 

{ (
~ 

i k+iA 
,p(x,y,k) = I - -

4 2r ----
k + iA 

~)} k + ip 
q(lI)~ 

k + ip 

Xexp[ik(u3x - y)]. (3.9) 

The spectral transform of Q is computed from (2.7) and 
it results that 

~ 
O· 

R k -i 
(,/)- -(j(k+i.1)p(i,t)(/+ip) 

(j(k + ip)r,(/,t) (l + i.1») 
o ' (3.10) 

and, consequently, the solution Q is indeed related to dis­
crete eigenvalues of the spectral problem (2.1 ). 

In order to get a soliton solution from the general solu­
tion Q, we have to choose the arbitrary functionsp(x + y,O) 
and 7J(x - y,O) in such a way that Q is localized in the space 
at any time. This can be easily done in the reduced case 

r= €q, €E R. 

If we introduce the following functions 

p(x + y,O) = 2 exp[ - p(x + y) ]S(u), 

7J(x - y,O) = 2 exp[.1(x - y)] T( 1'), 

with 

u = (ft +,u) - I exp[ (p + ,u)(x + y», 
l' = [€I(.1 + -i) ]exp[ - (A. + -i)(x - y)], 

(3.11 ) 

(3.12) 

(3.13) 

the reduction condition (3.11) at t = 0 becomes the follow­
ing functional equation; 

- - dS dT [1 +S(u)T(1')] - (u) = [1 +S(u)T(1')] - (1'). 
du d1' 

(3.14) 

It admits the following four different solutions: 

{S=~U+b, ba-ba=O, (3.15) 
T = a1' + e, ea - c a = 0, 
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{

s=au+ b, 

T= (ab - ab) -I(a + c exp[ (ab - ab)1']), 

lel2 = lal2, 

{

s = ~ab -_ab) - I(a + e exp[ (ab - ab)u]), 

T= a1'+ b, 

Jel2 = Ja12, 

{
s=~xp[ -au], a +a =0, 

T= ~cl2a exp[ - (aJcI2) -11'], 

leJ2 = Jb 1
2, 

(3.16) 

(3.17) 

(3.18 ) 

with a,b, and c arbitrary complex constants subjected to the 
indicated conditions. 

Only in the first case, with a convenient choice of the 
constants, one gets a localized solution. 

Therefore, in the following, we choose 

p(/,O) = p[(j(/ + ip) + (j(/ - ifi)], 

r,(I,O) = 7J[(j(l + iA) + (j(l- iA:)], 

with "I and p arbitrary complex constants. 

(3.19) 

Note that, in this case, both R (k,l) and ,p(/) are distri­
butions in I and one has to take into account that only their 
product is unambiguously defined via Eq. (2.7). 

We get for the one-soliton solution 
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q = U R 1J exp[iq:> ]lD, 

r = 2,uRP exp[ - iq:> ]lD, 

D = rexP(5/) + rexp( - 51) 

+ (1 + r)exp(52) + r exp( - 52)' 

r = !1JP, 

q:> = (,ul + AI)X + (,ul - AI)Y 

- [WI ( - iA.) + WI ( - i,u)] t, 

51 = (AR +,uR)X - (AR -,uR)Y 

- [wR( -iA) +wR( -i,u)]t, 

52 = (A R -,uR)X - (AR +,uR)Y 

- [wR( -iA) -wR( -i,u)]t. 

(3.20) 

For AR,uR #0 and r( 1 + r) > 0, the above formula de­
fines (up to the phase factor exp [ ± iq:>] in the numerator) a 
two-dimensional bell-shaped solution, exponentially de­
creasing in all directions of the (x,y) plane, moving without 
deformation with velocity v = (vx ,vy ) 

Vx = (UR,uR)-I[,uRWR( -iA.) +ARWR( -i,u)], 

Vy = (UR,uR) - I [ - ,uRWR ( - iA) + ARWR ( - i,u)]. 
(3.21 ) 

In general, the soliton is the envelope of the plane wave 
exp [ ± iq:> ]. The initial position of the soliton can be moved 
arbitrarily by the translation 

X--+X-Xo, Y--+Y-Yo, xo,YoER. (3.22) 

It is worth noting that the eigenfunction v 
= tft exp[ - ik(u3x - Y)] corresponding to the soliton so­

lution in (3.20) satisfies the integral equations (2.4) and 
(2.5) with the following values of a l and a 2 in Vo 

2iARr 1 
a l =I---- , 

k + iA. r+ «()(,uR) + r)exp[51 + 52] 

2i,uRr 1 
a 2 = 1 - ----------------

k + i,u r + «()( - AR) + r)exp[52 - 5d 
(3.23) 

( () is the step function). 
The DSI soliton is obtained for w(k) = ik 2, while the 

2DMKdVI soliton is obtained forw(k) = ik 3. In both cases 
with a special choice of the parameters A and,u, the soliton 
can have zero velocity or zero phase factor. However, veloc­
ity and frequency cannot be both zero. 

The auxiliary functions A for the DSI equation and A,B 
for the 2DMKdVI equation can be uniquely determined by 
using the so-called t component of the Backlund transforma­
tion, which can be written by using the Backlund gauge in 
(3.8) as follows: 

T2(Q)B(Q,0;A",u) - B( Q,O;A",u) T2 (0) = O. (3.24) 

By equating to zero the coefficients of the powers of the 
differential operator ay , one gets for the DSI equation 

A = !(ax - u 3ay )ay log Q2, (3.25) 

and for the 2DMKdVI equation 

A =!(ax -u3ay )ay logQ2, 

B=O. 
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(3.26) 

The auxiliary functions A can be obtained also by apply­
ing to Q2 the following inverse operator (ax + u3ay ) -I: 

(ax + ay ) -1j(x,y) 

= f: 00 dx' !(x',y - x + x') 

+ 4ARrl{r + «()(,uR) + r)exp[51 + 52]}' 

(ax - ay ) -1j(x,y) 

= f: 00 dx' !(x',y + x - x') 

+ 4,uRrl {r + «()( - AR) + r)exp[52 - 5d}. 
(3.27) 

and then by deriving with respect to y. 

IV. SPECTRAL TRANSFORM OF THE SOLITON 
SOLUTION 

The spectral transform R (k,I,O) of Q for the choice Vo in 
(3.23) is computed in the previous section. It is very instruc­
tive to compute the eigenfunction, say tft( + ), solution of Eq. 
(2.8) for the choice Vo = I of Fokas and Ablowitz. 14 The 
eigenfunction 1// + ) can be obtained by applying the Back­
lund gauge B(Q,O;A,,u) in (3.8) computed at t = 0 to the 
following eigenfunction of the spectral problem (2.1) with 
Q=O 

(PI (XO- y) 0) 
P2(X + y) exp[ik(u3x - y)], (4.1 ) 

where the two arbitrary functions Pi have to be determined 
in such a way that the diagonal elements of the matrix 
v = tft exp [ - ike u3x - y)] satisfy the following require­
ments: 

VII --+ 1 as X--+ - 00 for x - y const, 

V22 --+ 1 as X--+ - 00 for x + y const, 

VII ,V22 --+ 1 as k--+ 00. 

Let us, first, consider the case A R > 0, ,u R > O. The func­
tions /3i must satisfy the following ordinary differential equa­
tions 

-,uR tanh [,uR (x + y)]/32 + /3; - i(k -,ul )/32 = 1, 

with the boundary conditions 

/31--+0 as kl (x - y) --+ + 00, 

/32--+0askl(X+Y)--+ - 00. 

The constant phase 8 is defined by 

(1 + r)/r = exp(28). 

(4.2) 

(4.3) 

(4.4) 

The solutions /3i can be written in terms of the hypergeo­
metric function 

i 
/31 = k + iA 

XF(I,I; - _1_' (k + iA) + 1; 1 ), 
2AR 1 + exp[51 + 52 + 28] 

i 
/32 = k + i,u 

XF(I,I;-_i-(k+i,u)+I; 1 ),(4.5) 
2,uR 1 + exp[52 - 5d 
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or by using the following integral representations 

xJX -y du _ex_p-,[:--_i(_k_-_li.:.....1 )_(_x_-.....:y_-_u_)~] 
+ k f "" cosh [liRu + I5J 

X exp [ik(u3x - y)]. 

It has an infinite sequence of simple poles located in the 
lower half complex k plane and precisely for the first column 
of t/J at 

An = - fA - 2fAR n, n = 0,1, ... , 

and for the second column at 

(4.8) 

Pn = -iJL-2iJLR n, n=O,l,.... (4.9) 

For the other possible signs of liR and JLR one can easily 
derive analogous formulas. In the general case, the poles are 
always located in lower-half k plane and precisely for the 
first column of t/J at 

An = iiI - (2n + 1)iIAR I, n = 0,1, ... , 

and for the second column at 

(4.10) 

Pn=JLI-(2n+l)iIJLRI n=O,I,.... (4.11) 

A similar calculation gives t/J< - ) which is analytic in the 
lower-half plane and has a continuation in the upper-half 
plane with an infinite set of simple poles. 

In conclusion, choosing Yo = 1 in (2.8) and (2.9) leads 
to a representation of the soliton solution in terms of a con­
tinuous spectrum and not in terms of a finite set of discrete 
eigenvalues (as in 1 + 1 dimension). 

v. ELLIPTIC SYSTEMS IN THE PLANE 

The elliptic nonlinear evolution equations DSII (Ref. 
10) and 2DMKdVII (Refs. 11 and 12) can be derived from 
the corresponding ones DSI and 2DMKdVI via the change 
of variable 

y- -iy. (5.1 ) 

If one supposes that the possible soliton solutions can be 
obtained as the Backlund transform of the trivial zero solu­
tion, they have at t = ° the form 

q(x,y,O) = 

r(x,y,O) = 

Z=x + iy, 

(d Idz) [exp( - k)7J(z) ]exp[,uZ + k] 
1 + (1/4 )p(z)exp(pz)7J(z)exp( - Az) , 

(d IdZ)[exp(JLz)p(z) ]exp[ - JLZ - liz] 

1 + (1/4 )p(z)exp(pz)7J(z)exp( - liz) , 

(5.2) 
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/32 = cosh[JLR (x + y)] 

xfx+Y duexp[i(k-JLI)(x+y-u)]. (4.6) 

- k,oo cosh [JL R u] 

Therefore, the eigenfunction Jf;( + ) relative to the soliton 
and satisfying the integral equations (2.4) and (2.5) with 
Yo = I can be written as follows: 

(4.7) 

r 

with p(z) and 7J(z) some convenient analytic functions in 
z = x - iy and in z = x + iy, respectively. If exp (JLz) p(z) 
and exp( - AZ)7J(Z) are rational functions, we get (for 
A = - it) the lump solutions. If, on the contrary, 
exp(JLz)p(z) and exp( - AZ)7J(Z) have an essential singu­
larity located at infinity in order to get a regular solution the 
fields q and r cannot decay at infinity in all directions and the 
solution is not localized. We conclude that the previous re­
sult of Fokas and Ablowitzl4 about the existence oflumps in 
the elliptic case is confirmed by our analysis, which makes 
use of the Backlund gauge. 

Note added in proof; Since the submission of this paper, 
SOme developments of the theory will be found in Refs. 16-
18. 
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Self-consistent integral equations for multiple scattering amplitudes and dispersion relations 
for coherent propagation of elastic waves, are obtained from general reciprocity, two space 
scatterer formalism and by averaging the functional equations relating the multiple and single 
scattering amplitudes of the spheres. Approximations for bulk wave propagation numbers are 
derived. 

I. INTRODUCTION 

We consider the multiple scattering of plane harmonic 
elastic waves by an unbounded distribution of identical 
spheres embedded in an infinitely extended host medium. 

In these two media, solutions of the Navier's equation 
depend on time and space. Factoring out the harmonic time 
dependence, we consider only the solutions ofthe time-inde­
pendent linearized equation of dynamic elasticity (reduced 
wave equations) with no body forces for two different values 
of the Lame's constants and mass densities. 

At the interface of the two regions, various boundary 
conditions are possible which depend on the elastic nature of 
the embedded spheres. The total field inside the distribution 
of the identical spheres must be regular. The total outside 
field that is the sum of the incident wave and the scatterred 
field must also be regular. In general, the scattered field that 
consists of longitudinal and transverse waves must satisfy 
the radiation conditions at infinity. 1 

Following the techniques of Twersky, 2 we derive a sys­
tem of integral equations that permit us to express the far­
field multiple scattering amplitudes in terms of the single 
responses of the individual scatterers in isolation. 

The single scatterer in isolation has been treated by 
many authors. We mention in particular Ying and Truell;3 
Einspruch et al.4

, Einspruch and TruelV and Pao and 
Mow.6 These authors considered the case of the elastic in­
clusion, including the rigid sphere, the sperical cavity, and 
the fluid-filled cavity. 

In order to represent the scattering amplitudes, we use 
techniques developed by Twersky2 and extended to elasti­
city by Dassios 7 to obtain two pairs of vector single scatter­
ing amplitudes pgp' pgs for a longitudinal or p incident wave 
and sgp' sgs for a transverse or s incident wave. 

The scattering amplitudes are given in terms of surface 
integrals that arise from applying the identities of Betti to 
elasticity. 1 Inside the surface integrals, are the net scattered 
waves pO, sO corresponding to the single obstacle evaluated 
at its boundary or, the total outside fields p 1/J, s 1/J evaluated at 
the boundary of the scatterer in isolation. These results are 
compared to Barratt. 8 In the surface integral of Barratt, only 
the longitudinal or transverse part of the scattered field ap­
pears. 

For approximation purposes, we extend to elasticity the 
two space scatterer formalism of Twersky.9-14 Because of 

mode conversion at the boundary of the single obstacle, it is 
necessary to consider excitation of the scatterer by longitudi­
nal and transverse coherent waves and require the coherent 
waves to radiate into free space. 

The multiple scattering case is divided into two parts. 
First, we consider a configuration of N-identical spheres and 
use the self-consistent approach of Twerskyl1 to write the 
total outside field. 

Using this field and two arbitrary solutions of the single 
scatterer in isolation, we derive four self-consistent integral 
equations for the scattering amplitudes pGt:p, pGt:s' and 
sG,:P ' sG,!S in terms of the known scattering amplitudes of 
the single object located by r,o Our self-consistent integral 
equations reduce to the acoustic results of Twersky12.14 
whenever the medium cannot sustain transverse waves. 

Next, we consider the ensemble average over all config­
urations to obtain the total outside field as in Foldy15 ex­
tended by Twersky. 12 From the ensemble average of the self­
consistent integral equations, we derive dispersion relations 
for the bulk wave propagation numbers Kp ' Ks' The disper­
sion relations contain the radiative functions U·, QU' a ]P IJ ]S' 

Here, a, and {3 represent the sum of the responses due to 
either p or s incidence, respectively. To recast the dispersion 
relations into forms ready for applications, we introduce the 
associated radiative amplitudes aFp, pFs whose analogs are 
given in Twersky. 13.14 

From the associated dispersion relations, we give the 
Rayleigh approximation and the two sf'ace scatterer formal­
ism approximation which in the sparce .scatterer case re­
duces to the forward scattering results of Devaney. 16 

In general, we work with arbitrary scatterers and specia­
lize to spherical geometry. We use boldface to indicate vec­
tors. The hat on the top of a vector indicates that the vector 
has unit magnitude. The tilde on the top of a capital letter 
denotes a dyadic (second rank tensor). For brevity, we use 
(5:2) for Eq. (2) of Ref. 5. 

II. DEFINITIONS AND REPRESENTATION 

We consider the scattering of an incident plane harmon­
ic elastic wave. propagating in a direction k by a spherical 
object embedded in an isotropic and homogeneous elastic 
host medium specified by Lame's constants A., fL and density 
p different from A. " fL', and p' of the obstacle. 

The problem is to determine the total scattered field due 
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to the incident wave. The incident elastic wave can be either 
a longitudinal wave denoted as an p incident wave and given 
by p ~ or a transverse wave denoted as an incident wave and 
given by s~' The spherical object can be either a perfect elas­
tic sphere, a rigid sphere, or spherical cavity. 

Let v be the volume occupied by the scatterer and Vbe 
the volume outside ofthe scatterer. The surface of the spheri­
cal object is S, its radius is a, and it is centered at r = O. The p 
incident wave is parallel to the propagation vector k while 
the s incident wave lies along the polarization vector Es nor­
mal to the direction of propagation 

Esok = O. (1) 

The wave propagation numbers kp, ks satisfy 

m = cpkp = csks' (2) 

where c; = (A. + 2J.t)lp. c~ = J.tlp are the longitudinal and 
transverse phase velocities squared. 

We suppress the time-harmonic dependence e - icut and 
define the p and s incident waves as 

.... ( ) = k~ ik;'r .... () = ~ ik,k'r p't' r e 's't' r ese . (3) 

Hence, all quantities in the entire paper have at most a spa­
tial dependence. A factor of e - it"' is assumed in the final 
answer. 

In the region exterior to the scatterer, the total field due 
to an incoming x wave (here x stands for p or s wave) 

x'" = x~ + xu, (4) 

in the absence of body forces satisfies the time-independent 
linearized equation of dynamic elasticity 

[c;V(Vo) -c~VX(Vx) +m2 ](x"') =0. (5) 

In the expression of (4), the radiative function xu, 
which does not necessarily consist of p or s wave fields along, 
are given by (7:23) or (21:28) 

u(r) = {i,\xu} (6) 

with 

and 

Tr ==.2J.tiioVr + AJiVro + J.tiix (VX), (7) 

is the surface stress operator and ii is the exterior unit normal 
on S. The operator of (6) is a surface integral that arises in 
the identities of Betti for elasticity. Here r (r ,r') is the funda­
mental dyadic solution of 

L{r(r,r')} = - 4'm5(r - r') I, (8) 

with 

L=c~V; + (c; -c,)Vr.(Vr.o) +m2 (9) 

and 1 = rr + 96 + ~~ which is the identity dyadic and 
D(r - r') represents the Dirac measure concentrated at r. 

The net scattered fields of the single obstacle due to an 
incoming x wave are 

xu(r) =xup(r) +xus(r). (10) 

Asymptotically, using (7:35), (7:36) and (21:2.20-2.22) 
for r- 00, we have from (10) 

2620 J. Math. Phys., Vol. 31, No.11, November 1990 

(11 ) 

where 

xgp (i,k) = UkpI41TPC; ) {iie - ikj'r', [xu(r')]}, (12) 

and 

(13) 

with 

I. = (I-ii). (14) 

Since the p and s incident waves are nonsingular solutions of 
(5), we write using the third formula of Betti' 

{r(r,r'),[x~(r')]} = O. (15) 

Combining (15) with (6) gives 

xu(r) = {r(r,r'), [x "'(r')]}. (16) 

This gives us for (12), and (13) 

xgp(i,k) = (ikpI41TpC;){iie-ikj'r',[x",(r)]}, (17) 

and 

xgs (i,k) = (iksI41Tpc~){I.e - ik,h', [x ",(r')]}. (18) 

The representation given by Barratt8 is different from (17) 
and (18). In the forms of Barratt, only the p or s part of the 
scattered wave appears. In his forms, the stress tensor opera­
tor is replaced by the normal derivatives. 

Similar to Refs. 8, 17-21, we write the spectral represen­
tation of the scattered waves due a single object 

( ) - 1 1{ IkfX.'r( ) + Ik".-r( )}drt 
xU r - - e xgp e xgs U co 

217' e 

xgy = xgy(icok ), x,)IE{P,s}. 

In (19), kpc = kpie and kse = ks~e. The unit vector it;, 
= ie UJe,tpe ~ = (cos Be sin tpe)i + (sin Be sin tpe)j 
+ (cos tp c ) k, and cis the Sommerfeld's path. '9 The contour 
path c is chosen to insure that 1m [i e ] • (r - r') ;;;.0 (see Refs. 
8, 18-20). 

III. TWO SPACE SCATTERER FORMALISM 

Twersky in Refs. 9, 10, and 22 has considered the case of 
single scatterer excited by a coherent wave traveling in K 

space but radiating into free space or k space. The single 
scatterer was embedded in a synthetic macroscopic medium 
associated with the exciting coherent field. 

In Refs. 12-14, he used the two space scatterer formal­
ism to approximate a statistically homogeneous ensemble of 
configurations of N, identical and aligned scatterers whose 
centers are uniformly distributed in a volume V by a single 
equivalent obstacle. We now extend these techniques to elas­
ticity. 

We consider an elastic two space scatterer formalism. 
Because of mode conversion at the boundary of the single 
obstacle, it is necessary for us to use exciting fields that are 
longitudinal (p) and transverse (s). We assume the two 
space scatterer formalism in elasticity to consist of two dis­
tinct and linear scattering processes. They are longitudinal 
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and transverse due to exciting coherent fields p+;c (r), 
s+;c (r). 

Let I( be the bulk propagation vector and £ be the bulk 
polarization vector such that 

1(0£ = o. (20) 

Let Kp and Ks be the bulk longitudinal and transverse wave 
propagation numbers, respectively. We represent the coher­
ent exciting fields as 

.... () A iK,f<·r .... () A iK.,x·r (21) 
p't'K r = ICe , S't'K r = ee . 

The total outside fields due to the incident coherent waves 
are given by 

(22) 

Similar to (12) and (13), as r -+ 00 we write the two space 
scatterer formalism vector scattering amplitudes as 

xgp (r,l() = Ukp/41TpC; ){rre - ikl'r', [x UK (r')]}, (23) 

and 

IV. MULTIPLE SCATTERING 

We consider a fixed configuration of N-identical spheres 
with centers located by r m (m = 1,2, ... ,N) (11: 12, 12: 11 ) . 
We represent the total multiple scattering field x'l' corre­
sponding to an incoming x wave (where x is p or s) as 

N 

x'l'=x++ L xVm(r-rm)· (25) 
m=) 

Here, we use the obvious decomposition into p and s fields 

xV m (r - r m) = xV m:p + xV m:s (26) 

for the multiple scattered wave which radiates from the scat-
terer fixed at r m • . 

Equivalently, with reference to the scatterer located by 
rIO 

x'l',(r) = x+(r) + L' xVm + xV,(r - r/ ), (27) 
m 

where 

xV,(r - r/ ) = XV/:P + XV/:S' 

and 

(28) 

L' = L' (29) 
m m,,;.t 

Vsing the surface integral representation of Sec. II, the mul-
tiple scattered wave associated with the scatterer located at t 
is 

x V, = {f'P'[XV, (r , + r') J} + {i'., [xV, (r, + r')]). 
(30) 

Asymptotically, for r-+ 00 (30) becomes 

xVI(R/) =h(kpIR/I)[xG/:p] + h(kslRtl>[XG/:S]' 
(31 ) 

where 

Rt = r - r" G = G(rt;r). (32) 

Here h(kx Ir - r/l) is the Hankel's function of the first kind; 
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XG/:P and XG/:. are the longitudinal and transverse multiple 
vector scattering amplitUdes of the scatterer at t due an in­
coming x wave. 

Following the development leading to (12) and (13), 
the multiple vector scattering amplitudes are 

xG/:p(r/r) = (ikp/41Tpc;){rre- ikl'r', (xV,)}, (33) 

and 

XG/:S (r/;r) = (ik.l41TpC;) {i. e - ik,r.r·,(x V,)}, (34) 

xV, = xVI(r, + r'). 
The spectral representation of the multiple scattered wave 
analog to (19) is 

V (R ) - r { Ikpc'R,( G ) + Ik,e'R ,( G )} (35) 
x t I - Jc e x t:pc e x t:sc , 

V. SELF-CONSISTENT INTEGRAL EQUATIONS OF THE 
CONFIGURATIONAL MULTIPLE SCATTERING 
AMPLITUDES 

We derive two self-consistent integral equations for the 
multiple scattering amplitUdes in terms of the known single 
scattering amplitudes of Sec. II for the case of an initial inci­
dence longitudinal p wave. The development for an inci­
dence s wave is similar. For more details see Refs. 20 and 21. 

We consider for the t-scatterer two arbitrary single solu­
tions P"'/(ra), and s"" (ra ) [where (r.,rb ) are arbitrary di­
rections of propagation] and the configurational multiple 
solution p 'I'/:b' The requirement that they satisfy the same 
conditions on the surface S, of the scatterer and its volume 
V, corresponds to 

{p"'/(r.),p\f!t:b}, =0, t"'/(r.),p'l'/:b}, =0. (37) 

In the first part of (37), replace p "'I (r.) and p 'I'/:p to obtain 

{p+a +PU/,'(P+b + ~'pVm +pV,)}, =0. (38) 

Vsing brace algebra of Refs. 20 and 21 in (38) with the 
vanishing of the nonsingular and the S 00 terms gives 

{p+a,[pVI(r, +r')]}, 

= {P+b'(pU/.)}, 

+ {~'pVm(r-rm),(pU/'>},' (39) 

(40) 

WE{a,b}, 

r = r , + r', Rtm = rt - rm' and (35) into (39) we have 

A {A A ik,j u·r • ( V )} rao rara e , p I I 

(41) 

D. D. Phanord and N. E. Berger 2621 



                                                                                                                                    

Define the vector multiple scattering amplitudes as follows: 

pGm:p(re) = p~m,p[pGm:p(re»' 
pGm:s (re ) = p~mJpGm:. (re », (42) 

where p~m,p,p~m" are the configurational polarization vec­
tors. 
With (12), (33), and (42), we reduce (41) to 

(c;lkp)ra"pG,:p( -ra) 

_ c; A • ( ) ,k .. r, + C; ~, r ,k",'R,m A - k rb pgl:Ph e k ~ L e pEm,. 
ppm c 

. (pKl:s
c

) p Gm:s (re ), (43) 

xe{p,s}, te{b,c}. 

Using the reciprocity relations 

kl"pgp( -kl,k2) =k2 "pgp( -k2,kd, (44) 

and 

kl "sgp ( - kl ,k2) = (kjkp) - 3~s:pgs ( - k2Jk. ) (45) 

of(21:2.47,2.51); -ra =r,andrb =kin(43) lead to the 
desired result 

G· (A) _ (A kA) ,k .. r, p ':p r - pg,:p r, e 

(46) 

Similarly, the second part of (37) gives the second self-con­
sistent integral equation 

G (A) _ (A kA) ,k .. r, p ,:s r - pg,:s r, e 

+ tk" .• R.m( (A A » G' (A)] e sg,:s r, re p m:s re . (47) 

Equations (46) and (47) determine the multiple scattering 
amplitudes corresponding to an incoming wave p~ in terms 
of the responses of the individual scatterers. 

A similar system of two equations for the multiple scat­
tering amplitudes sG,:p and sGt:s results from the considera­
tion of an incoming s ~ wave. 

Equation ( 46) reduces to the acoustic results of 
Twersky (12:16) whenever the medium cannot sustain 
transverse waves. 

Barratt gave one combined equation for the multiple 
scattering amplitudes. The differences between the represen­
tation of Barratt and ours lie in the way the single scattering 
amplitudes are obtained. For Barratt, the single scattering 
amplitudes came directly from the longitudinal or transverse 
part of the scattered field. In our case, the single scattering 
amplitudes are computed from the net resultant scattered 
field. 
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VI" ENSEMBLE AVERAGE 

The average of p \II(r) over a statistically homogeneous 
ensemble of configurations of N-identical spheres whose 
centers r m are uniformly distributed in a volume V is given 
by Twersky (11:17). 

VII(r» = 1. r (p\ll)m dV(rm), (48) 
V Jv 

where (p\ll(r» is independent of the configurational vari­
ables (r l , r2, ... ,rN ) and ( )m, the average with rm held 
fixed, depends only on r m • 

Replacing p \II (r) by its value inside the volume integral 
of ( 48) leads to 

(p\ll(r» =p~(r) +Pn Iv (pUm(r-rm»m dV(rm), 

(49) 

where Pn =N IV is the average number of centers per unit 
volume. 

Decomposing the volume V into 

(50) 

where v m is the volume of the scatterer located by r m' and 
representing pUm (r - rm) by 

p Um (kp,ks) =p Um:p (kp,ks) + p Um:s (kp,ks )' (51) 

we rewrite (49) as 

(p\ll(r» =p~(r) +Pn L-vm (pUm(kp,ks»m dV(rm) 

+Pn 1m (pUm(k;,k;»m dV(rm), (52) 

with (p U m (k;,k;» m being the average scattered wave in­
side the volume v m • 

We can directly average (33) and (34) to obtain 

( G ( .A» _ ikp {AA -,k/'r' ( U ) } p top r"r ,---- rre 'P' , 
41TPC; 

=pGp(r,;r), 

( 
.A ) _ iks {f - ,k.l·r' ( ) } pG,:s(r"r) ,- -- I.e , pU, t 

41TPC; 
(53) 

=pGs(r,;r). 

The ensemble average vector scattering amplitudes due to an 
incoming s incident wave can be obtained from (53) as 

( G ( A)') ikp {AA -,kl"r' ( U ) } s ':p r,;r ,= --- rre 's' , 
41TPC; 

=sGp(rt;r), 

( A) iks {f - ,k!'r' ( )} sGt:s(r,;r) ,= -- I.e ' 'sU" 
41TPC; 

(54) 

=sGs (r,;i). 

VII. DISPERSION RELATIONS FOR THE EFFECTIVE 
MEDIUM 

We consider only the case of an initial p wave. The cases 
of an initial s wave as well as a general wave can be handled 
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similarly. To derive the dispersion relations needed to com­
pute the bulk wave propagation numbers, we combine the 
ensemble average of ( 45), (46), and use with our identical 
scatterers the quasicrystalline approximation ofLax23 to ob­
tain (21 :4.5, 24:59) 

aG(r"r) = ag(r,k)e'1<p"r, + Pn L- v dr",/(Rtm ) 

. {i ,1<pc'R.m( ) G e age p p 
e 

+ i e'1<,eR.m«(3ge) p Gs }, 

pGx==pGx(rm, re)' 

qge ==qg(r, re ), xdp,s}, qe{a, P}, 

and 

aG(r,;r)==pGp(r,;r) + pGs(r,;r), 

ag(r,k) == pgp (r, k) + pgs (r, k), 
(3g(r,k) ==sgp (r, k) + sgs (r, k). 

(55) 

(56) 

Here f(Rtm) is the radial distribution function associated 
with the distribution of scatterers in the region V. It is zero 
for IRtm 1< 2a, and goes to I when Rtm goes to infinity. 

To take advantage of the two space scatterer formalism 
of Sec. III, we introduce the equivalent medium approxima­
tion expansion as 

xe{p, s}. (57) 

The internal field for the distribution corresponds in general 
to four waves. They are a p and an s wave with their reflected 
counterparts. 

For the two space scatterer formalism, the vector scat­
tering amplitudes corresponding to the equivalent medium 
are 

ikp {AA _ ,1<p,r' [ . '] } pgp(kprIKjp)=--2-rre ,p~q(r), 
41TpCp 

iks {f - ,1< 'r' [ . '] } pgs (ksr IKjs) = --2 I.e ", p~q (r) , 
41TpCs 

(58) 

where p~q (r') is the net scattered field of the single obstacle 
equivalent to the distribution of identical scatterers in a vol­
ume V bounded by a slab of thickness d. 

The volume integral of (55) can be decomposed into 
two integrals 

(59) 

In addition, the integral 

r (1) = r (1), 
Jv-v Jvn+VL+VL, 

(60) 

where VB is the bulk volume, VL , VL , are boundary layers, 
and the integral 

(61) 
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sincef(Rtm ) -I as Rtm --+ 00. 

In VB' and VB - v we use G of (57) and reduce f VB to 
integrals over the layer surfaces (z = [, d - [') and exclusion 
surfaceS(b) by Green's theorem (21:4.19, 12:55-56, 13:61-

62). The layer integrals combine with ag(r, k)e'1<p·r, to pro­
duce vanishing sums of coefficients. The dispersion relations 
are given by the coefficients of /I<ip· r, and /<i,r,. Hence, the 
dispersion relations are (12:60, 13:65) 

pgx (kxr IKjx) 

= [Pnl(KJx _k~)]{[e-il<iX'R,(qUjx)]h 

+ Pn Loo _ v d(R)(j(R) - I)e - il<ix·R(qUjx ), (62) 

x = p, q = a; or x = s, q = p, (63 ) 

andR=~m' 
Here, the radiative functions aUjp' (3ujS of the form of 

( 19) satisfy 

(VfRI +k~e)qujx =0, (64) 

and for (x = p,q = a) or (x = s,q = P) are given by 

The brace operator in (62) is an operator introduced by 
Twersky (13:63) given by 

{[f,gJ}b== r [JOn (g) -gan(f)]dS(b), (66) 
JS(b) 

where 

S(b) = So (67) 

is the exclusion surface with 0 being the outward unit normal 
from v(b). 

To introduce the associated radiative amplitudes qFx, 
we rewrite (65) as 

- r ,1<",R F 
qUjx=Je e q x' 

(68) 

where 

qFX (kpr,ksr,kxe IKjx) == [qg(r,re) ]pgx (kxe IKjx) 

(69) 

or 

qFx{kpr,kxr>Kxc I~x} =={ [e - il<ix•
R

, (qUjx ) ]} b' (70) 

We substitute (68)-(70) into (62) to obtain the associated 
dispersion relations (12:64, 13:66) 

pgp (kpr IKjp ) 

- [Pnl(KJp -k;)]aFp{kpr,ksr,KjpIKjp} 

+ i vH' (kpc,Kjp) [aFp (kp"krs,kpc IKjp) ], (71) 

and 
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pgs (ksr IKjs) 

= - [Pnl(Kj, - k;)]pFs{kp"ksr,Kjs IKjs} 

+ i ..ff (ksc,Kjs ) [pFs (kpr,krs,ksc IKjs) ], (72) 

with 

..ff(k,K) =Pn L~-v d(R)(j(R) _l)e-(k-K).R. (73) 

VIII. RAYLEIGH APPROXIMATION 

We approximate the associated radiative amplitudes of 
(69) and (70) for (x = p,q = a) or (x = s,q = f3) as 

qFx { } = [qg(r,r)]pgx (kxc IKjx) 

+ { [ (e - iKj,R _ e - ,k".R), (q ujx ) ] } b. (74) 

For r = rc = k, we have 

qFx {kpr,ks"Kjx IKjx} =qg(k,k) pgx (kxr IKjx ). (75) 

We substitute (75) into (71) and (72), and solve for the 
bulk wave propagation numbers with Pn =0, ..ff (k,K) = 0 
(Ref. 24) to obtain (12:65, 13:69) 

K" - k ~ = - Pn [pgp (k,k) ], 
and 

. .2 2 " ,.. 
"s - k s = - Pn [sgs (k,k)]. 

(76) 

(17) 

The forward scattering amplitudes of (76) and (77) for a 
rigid sphere of radius a are given by Barratt and Collins. 25 

We use their results in (76) and (77) and 

~ _k 2 = -P -a -p 1 +-p-3 (k )2( k 2 ) -1 
p p n 2 k 2k2 

s s 

and 

~ - k;= -Pn~a(l + k~12k;)-1 
X [1 - iksa(l + k!12k;) (1 + k~/2k;) - T 

(79) 

IX. TWO SPACE SCATTERER FORMALISM 
APPROXIMATION 

We rewrite the associated radiative amplitudes of (70) 
as 

qFX { }= [qg(r,K) ]pgx (kXK IKjx) 

+ {[ (e - iKjx·R - e -,kx.·R),(qUjx )] h, (80) 

kPK = kpK, kSK = ksK. 

Taking the leading term in product of scattering amplitudes, 
we reduce (80) with r = K and (x = p,q = a) or 
(x = s,q = f3) to 

qFx{kpr,ksr,Kjx IKjx} = [qg(K,K)]pgx (kXK IKjx ). (81) 

Substituting (81) into (71) and (72), retaining only the 
leading term in product of scattering amplitudes, and solv­
ing for the bulk wave propagation numbers, we obtain 
(12:68) 
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(82) 

and 

~ - k; = - (Pn)P ~ (ksc,ksK IKjs) [pg(K,K)]. (83) 

Here, for (x = p,q = a) or (x = s,q = f3) 

q ~ (kxc,kxK IKjx) = [1 - (q..ff) Ipgx (kXK I Kjx )] - 1 (84) 

and 

(q..ff) = i ..ff(kxc,Kjx ) [qg(K,r,,)]pgx(kxcIKjx )· (85) 

Using the approximations 

pgp(kpKIKjp)=pgp(r,K) + pgs(r,K) 

and 

(86) 

pgs (kSK IKjs) =sgp (r,K) + sgs (r,K) (87) 

of Sec. III, and keeping only the leading term in (84), with 
r = K, we obtain the two space scatterer formalism approxi­
mation for the q ~ operator of (82) and (83). Hence, (84) 
for (x = p,q = a) or (x = s,q = f3) using the notation of 
(36) becomes 

q ~ (kxc,kxr IKjx) = 1 + (q..ff x )lqg(K,K) (88) 

and 

(q..ff x) = i ..ff (kxc,Kjx )qg(K,rc )qgx (rc,K). (89) 

Substituting (88) and (89) into (82) and (83), we have the 
desired results 

(90) 

and 

(91) 

When (q..ff x) = 0, Eqs. (90) and (91) correspond to the 
forward scattering results of Devaney (16:4.13a, 4.13b). 
The two space scatterer formalism scattering amplitudes are 
given in Appendix B of Ref. 21. 

Equations (62), (71), and (72) can be specialized to 
specific geometry or extended to cover the case of an inho­
mogeneous and anisotropic elastic host medium. From the 
self-consistent integral equations (46) and (47), we can ob­
tain asymptotic expansions for the configurational scatter­
ing amplitudes similar to Barratt and Twersky. 
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Reciprocity relations, energy theorems, and scattering cross sections are derived for a fixed 
configuration of N-identical and similarly aligned lossless scatterers whose centers are 
uniformly distributed in a given volume. The general results are specialized to scattering in the 
forward direction. 

I. INTRODUCTION 

Reciprocity relations, energy theorems, and scattering 
cross sections represent an important segment of scattering 
theory for acoustics, elasticity, electromagnetics, quantum 
mechanics, and other connected disciplines. The total scat­
tering cross section, which is the sum of the absorption and 
the scattering cross sections, measures the disturbance 
caused by the scatterer or scatterers to the incident wave. It 
is defined as the ratio of the average at which energy is ab­
sorbed and scattered by the single or many scatterers to the 
average rate at which the energy of the incident wave crosses 
aunit area normal to the direction of propagation. 

Barratt and Collins I used a method due to Jones2 for the 
asymptotic evaluation of double integral to express the scat­
tering cross section due to a single object by means of the 
spherical scattering amplitudes in the forward directions. 
Tan3 extended the general Betti-Rayleigh reciprocity theo­
rems to problems of elastodynamics. In Ref. 4, he used meth­
od of De HoopS to establish theorems on scattering cross 
sections for the scatterer in isolation. 

Varatharajulu,6 employed the Helmholtz decomposi­
tion of the total displacement vector, and the techniques of 
Jones 7 to derive reciprocity relations and formulas for the 
scattering cross sections corresponding to different combi­
nations oflongitudinal or transverse incident waves. Dassios 
et al.8 extended into elasticity the techniques developed by 
Twersky9 for the individual acoustic scatterer. They pro­
vided a direct way of evaluating the scattering cross sections 
from the scattering amplitudes in both general and forward 
directions. 

In this paper, we extend the results of Twersky 10 to mul­
tiple scattering by elastic bodies. We derive four reciprocity 
relations, energy theorems, and formulas for the scattering 
cross sections of a fixed configuration of N-identical and sim­
ilarly aligned lossless scatterers whose centers are uniformly 
distributed in a give volume. We specialize these new results 
in the forward scattering direction. 

To introduce notations and representations necessary 
for further development, we consider briefly the single elas­
tic scatterer in isolation,ll-15 and a fixed configuration of N­
identical and similarly aligned scatterers 10,16-20 to obtain 
with the self-consistent approach of Twersky 16 and total out­
side field. 

In general, we work with arbitrary scatterers and specia-

lize to spherical geometry. We use boldface to indicate vec­
tors. A hat on the top of a vector indicates that the vector has 
unit magnitude. A tilde on the top of a capital letter denotes a 
dyadic (second rank tensor). For brevity, we use (3:5) for 
Eq. (5) of Ref. 3, and retain where it is possible the equa­
tional forms of Refs. 10, 15-19. 

II. DEFINITIONS AND REPRESENTATION 

We consider the scattering of an incident plane harmon­
ic elastic wave ell propagating in a direction k by a spherical 
object embedded in an isotropic and homogeneous elastic 
host medium specified by Lame's constants A, p and density 
p different from A', p', andp' of the obstacle. 

The problem is to determine the total scattered field due 
to the incident wave. The incident elastic wave can be either 
a longitudinal wave denoted as a p-incident wave and given 
by p ell or a transverse wave denoted as an s incident wave and 
given by sell. The spherical object can be either a perfect elas­
tic sphere, a rigid sphere, or spherical cavity. 

Let v be the volume occupied by the scatterer and Vbe 
the vol ume outside of the scatterer. The surface of the spheri­
cal object is S, its radius is a, and it is centered at r = O. The p 
incident wave is parallel to the propagation vector k while 
the s incident wave lies along the polarization vector Es nor­
mal to the direction of propagation 

Es'k = O. (1) 

The propagation parameters kp, ks satisfy 

(t) = cpkp = csks, (2) 

where c; = (A + 2p,)lp, c; = pip are the longitudinal and 
transverse phase velocity squared. 

We suppress the time-harmonic dependence e - ;"" and 
define the p and s incident waves as 

(3) 
.1..( ) _ A ;k~.r 

s't' r - Ese , 

Hence, all quantities in the entire paper have at most a spa­
tial dependence. A factor of e - ;"" is assumed in the final 
answer. 

In the region exterior to the scatterer, the total field due 
to an incoming x wave (where x is ap or an s wave) 

x'" = x ell + xU, ( 4 ) 

satisfies the time-independent linearized equation of dynam-
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ic elasticity in the absence of body forces 

[c;V(Vo) -C;VX(VX) +w2]1/I=O. (5) 

The radiative functions u in ( 4 ) which in general consist 
of p or s wave fields are given by (15:23) or (18:2.8) 

u(r) = {r,u} 

1 1- -, =- [roTr,u - uoTr,r]dS(r ). 
41T S 

(6) 

Here, 

Tr =2pooVr + AOVro + poX (VX) (7) 

is the surface stress operator and 0 is the exterior unit normal 
to S. The operator in (6) is a surface integral which arises in 
Betti's24 identities for elasticity. Here r(r,r') is the funda­
mental dyadic solution of 

L{r(r,r')} = - 4m5(r - r')I, (8) 

with 

(9) 

_ AA 

where I = rr + 66 + ci>ci> is the identity dyadic and 8 (r - r') 
represents the Dirac measure concentrated at r. 

Decomposing the net scattered fields of the single obsta­
cle due to an incoming x wave into the form of a p plus s field 
we have 

"u(r) = "up(r) + "us(r). (10) 

Using (15:35), (15:36), and (18:2.20-2.22) for r ..... 00, we 
obtain from (10) the asymptotic form 

"u(r) _ [ ~ikpr ]"Kp (r,k) + [ ~ik,r] Ks (r,k), 
lkpr lksr " 

xe{p,s}, (11) 

where 

~ ik ·k • , 
( ~ k) p {~~ -, p ... r [ (')]} "Kp r, =--- rre , "U r , 

41TPC; 
(12) 

,.. A iks _ ik i-r' , 
xKs(r,k) =--U.e ' ,["u(r )]}, (13) 

41TPC; 

and 

I. = (I - rr). (14) 

In a manner similar to Refs. 10, 17-24, we write the 
spectral representation of the scattered waves due to a single 
object as 

( ) = _1_ i{ '1.""r + '1.",r }dn xU r e xKp e xKs U C ' 
21T c 

xe{p,s}, K = g(rc,k). 
(15) 

In (15), kkc = kprc and ksc = ksrc' The unit yector rc 
=rc(Oc,fPc) = (cosOc sin fPc)i + (sinOe sinfPc)j 
+ (cos fPc) k, and c is the Sommerfeld's path. 23 The contour 

path cis chosen to insure that Im[rc Hr - r'):>O (see Refs. 
10,17-23). 

III. MULTIPLE SCATTERING 

We consider a fixed configuration of N identical spheres 
with centers located by rm (m = 1,2, ... ,N) (16:12, 17:11). 
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The total multiple" 'I' correspond to an incoming x wave is 
N 

,,'I'=x++ 2: "Um(r-rm), (16) 
m=. 

where" U m represents the total mUltiple scattered field. 
Decomposing V into p and s fields 

x V m (r - r m) = xV m:p + "V m:s' ( 17) 

for the multiple-scattered wave that radiates from the scat­
terer fixed at r m' we have, with reference to the scatterer 
located by r t> 

(18) 
m 

where 

xV, (r - r,) = "V,:p + "V,:s' (19) 

and 

2:'=2:. (20) 
m m"", 

Using the surface integral representation of Sec. II, the mul­
tiple-scattered wave is 

xV, = {i"p,[xV,(r, +r')]} + {r .. [xV,(r, +r')]}. 
(21) 

Asymptotically, for r ..... 00, (21) becomes 

xV,(R,) = h(kpIR,I)"Gl:p + h(ksIR,I)xGt:s> (22) 

where 

R, = r - r" G = G(r,;r), (23) 

Here, h(k" Ir - r, I) is the Hankel's function of the first 
kind, xG,:p and xG,:s are the longitudinal and transverse 
multiple vector scattering amplitudes due an incoming x 
wave. 

V sing the same techniques, as in (12) and (13), the 
multiple vector scattering amplitudes can be represented by 

G ( ~) - ('k /4 2){~~ -ik,rr' ( V)} 
X ':p r"r - I p 1TpCp rre 'x,, (24) 

and 

G ~ ( 'k /4 2 {i - iki· r' ( V } " t:s(rt;r) = I s 1TpCs) .e ' ,,, ,) , (25) 

where xU, ="Vt(r, +r'). 
The spectral representation of the multiple-scattered 

wave analog to (15) is 

V (R ) - i{ '1.""R G + ,1..",R G } (26) 
xl l-c e Xl:pc e XI:sC' 

where xG,:ye = "Gt:y (re ),yE{p,s}, and 

i{ } = _1 i { } dOc· (27) 
e 21T c 

IV. RECIPROCITY RELATIONS FOR MULTIPLE 
ELASTIC SCATTERING 

In this section, we establish reciprocity relations for the 
multiple vector scattering amplitudes corresponding to dif­
ferent combinations of the incomingp or s waves. In general, 
we consider two arbitrary outside total multiple solutions 
x'l'., y'l'2 due to two arbitrary incident waves x+., Y+2' 
where x and y can be either p or s. We will derive the 
x = p, y = p and x = p, y = s cases. The remaining two cases 
are similar. 
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For the x = p, y = p case, we consider for the t scatterer 
two arbitrary total outside configurational solutions p \fit: 1 , 

p \fI t:2 . The requirement that p \fit: 1 , P \fI t:2 satisfy the same con­
ditions on the surface St of the scatterer and within the vol­
ume V t gives 

{p \fit: 1 ,(p \fI':2 )}t = O. (28) 

Applying (18) to (28), we have 

{pCPl + pUt, (r t + r'), [p«l»2 + pUt, (r t + r') PI = 0, 
(29) 

where 

, 
p«l»j=pc!>i+IpUm,(r-rm ); i=I,2. (30) 

m 

Using the brace algebra of Refs. 10, 16-18, we recast (29) 
and (30) into 

{pc!>J'[pUt, Pt + {~' pUm, (r - rm ),[pUt,]} t 

= {Pc!>2,[pUt, Pt + {~' pUm, (r - rm ),[pUt,]},. 

(31) 

At mpm2 we use spectral representation or (26) to obtain 

{Pc!>l'(pU t , )}t + ± J{(eikpc'RmpGm,:pc + e'k""RmpGm,:sc )'(p Ut,)}t 
m C 

= {Pc!>2,(pU I , )}t + ± ({(e,kp<"RmpGm,:pc + e,k".RmpGm,:sc),(pUt, )}" 
m Jc 

(32) 

Using 
A A A ik;tr' 

pc!>i = ki(kikie ), 

pGm:xc = pGm:x(fc) = pEmJpGm:x(fc)], (33) 

with iE[ 1,2], and xE{ p,s}, working similarly to (10:20, 121-126), and 08:3.18-3.20) with Rtm = rt - r m' we transform 
(32) into 

(34) 

Here we define 

Ie = (fcfc) + (6 c6c + CPcCPc), I'e = Ic - (fcfc)' (35) 

with pEm)lfc with pEm)fc. In (34), the six quantities inside the braces are proportional to the configurational vector 
scattering amplitudes due to the different longitudinal incident waves. Combining (24) and (25) with (34) leads to the p-p 
multiple elastic reciprocity relation 

c2 
A A A c2 

(. A t- kJ'pGt.p( - k l ,k2 ) + t- I' J/kp,R,mpEm,.;pGt:p( - rc,k2 ) [ pGm,:p(rc )] 
ppm c 

c
2 

, J A S ik~(.·Rtm A ..... A 

+-k L e pEm2:pGt:s ( -rc ,k2 )[ pGm,:s(rc )]' 
s In c 

(36) 

The result for two transverse incident waves is obtained from (36) with p replaced by s, and ki replaced by Ei in the 
appropriate locations. Hence, the s-s multiple elastic reciprocity relation is 
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(37) 

Here, £sl '£s2 are the polarization vectors of the two transverse incident waves. 
For the case of x = p, y = s, we proceed as we did in the ~p incident waves. With p and s incident waves, Eqs. (29) and 

(30) read 

(38) 

with 
, , 

p<l>l = pc!>1 + L pUm, (f - f m ), s<l>2 = sc!>z + L sUm, (f - fm)' (39) 
m m 

Following (31), we transform (38) into 

{Pc!>l'CU" )}t + i f {(e'kpc'RmpGm"pe + e'k"'RmpGm,osc ),CU" )}, 
m Jc 

= tc!>z,( pUt, )}, + i f {(e'kp"RmsGm"pc + e'k"'RmsGm,osc ),( pUt, )},. 
m Jc (40) 

As in Refs. 10 and 18, and with 

G G A A [G A] ..... _ A • {I- ik,k"r'} 
s m,xe =s m,x(re ) =sEm", s m,x(rc )' s'l"Z-Es,·e , (41) 

we reduce (40) to 

A A A ikji"r' , 1 Ik",.R'm A {A A Ikp,.'r' } 
kl'{klkle ,CU,,)}, + L e pEm"p' fefce ,CU,,) t pGm"pe 

m e 

+ ~I le'k"'R,m £ .{i. e'k,,-r',( U)} G . 
~ , P mh c S t~ I P m •. sc 
m c 

(42) 

The six quantities inside the braces in (42) are proportional to the configurational vector scattering amplitudes due to either p 
or s incident waves. Combining (24) and (25) with (42) gives the p-s multiple elastic reciprocity relation 

(43) 
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(44) 

Equations (36), (37), (43), and (44) are the multiple scattering reciprocity relations. 

v. ENERGY THEOREMS AND SCATTERING CROSS 
SECTIONS 

From Ref. 19, we have 

{P'l';'P'l'2}' =coSa, (45) 

where Sa is the configurational absorption cross section 
which is null for elastic solid6 made up oflossless scatterers. 
The * means complex conjugation. 

The four different multiple elastic reciprocity relations 
lead to four different energy theorems. We derive the results 
for p-p and p-s incident waves, and use them to obtain ener­
gy theorems for the s-p and s-s incident cases. 

For the p-p case, we have starting with (45), and (30) 
, 

C~;,( pU,,>}, + LCU;",,( pU,,>}, 
m 

+ { p U;, ' ( p U" ) } , ( 46 ) 

+ C U;, ' ( p ~2)}' + { p U;, ' t p U m, L = O. 

In (46), the first term is transformed by (24) to give 

C~~,( pU,,>}, = -p)~'I·pG,:pd~'I,k2)' (47) 

and the second term, after applying spectral representation 
at m l , complex conjugation, and (24) and (25), becomes 
, 

LCU;",,( pU,,>}, 
m 

= - L Px ± re-lk:"R,mp£m;:x 
X=p,s m Jc 

.p G,:x (r;,k2) [ pG ;",:x (re ) ], 
(48) 

/3x = (41Tic;/kx)' 

In the third term of (46), by Betti's theorem for the 
exterior, we replace the surface S, of the t scatterer by the 
surface at infinity. From the asymptotic form (22) for 
pUp (Rt ), we obtain8,lO,15.19 

CU;"pU,), 

= CU;,,( pUt'>} "" 

= - 41TW2ip(L {k p- 3 pG;p (r,kd·pG,:p (r,k2 ) (49) 

+ k s- 3 pG;:s (r,kl )·pG,:s (r,k2)}dO,) 

2w2ip ~ ~ 
- -k-(P,P) Sscat (k l ,k2 ), 

p 

where (p,p) Sscat (kl ,k2 ) is the configurational scattering 
cross section due to p-p incident waves, and dO, is the differ­
ential solid angle around r. The integration in (49) is over all 
angles of observation. 

Using (6), we rewrite the fourth and fifth terms of ( 46 ) 
to obtain 

and 
, , 

{pU;,'LpUm), = - L{pU;",,( pU,,>};. 
m m 

Proceeding similarly to (48) and (49), (50) gives 

CU;,,( p~2)}' = - C~;,( pUt'>}; 

and (51) leads to 

{pu;"t PUm, L 
, 

- L{ pU;",,( pU" )}; 
m 

(50) 

(51) 

(52) 

.pG;:x(r;,kl ) [ pGm,:x(re )]. (53) 

Combining (46) with (47)-(49), (52), and (53) leads to 
the general p-p "energy theorem" 

:'! [k l •pG,:p(kl,k2) + k2"pG;:p (k2,kl)] + :'! [~' fe -lk;"'R,mp£;",.;pG,:p (r;,k2) [ pG ;",:p (re >] 

2630 

+ t le1kp<'R,m p£m2;pG;:P (r;,kl) [ pGm,:p (re )] ] + ~ [t fe -Ik;"R,mp£;",:s·pG,:s (r;,k2) [ pG ;",:s (re )] ] 

+ t le,k-c.R,mp£m2.:pG;:s [ p Gm,:s (re )] ] = - ~ (p.p) Sscat (k l ,k2 ). 
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For the forward direction, assuming that the directions of longitudinal and transverse waves coincide, we obtain the p-p 
"forward energy theorem" 

- ~; m[k'pGt:p(k,k) + t le,kp<'R,mpEm./pG;:p(i;,k)[ pGm:p(ic>1] = (p,p)Sscat(k,k), 

where m denotes the real part. 
We can use (54) to write the geneal s-s "energy theorem" 

41T [ A G (k
A 

k
A

) A G" (k
A 

k
A 

)] 41T [~i" -,k;""R'm AO G (AO k
A 

) [ G" (A) ] -k 3 Es,'s ':s I' 2 + Es,'s ':s 2' I + k3 ~ e sEm,:p's ':p re , 2 s m,:p rc 
s p m c 

and 

(s,s) Sseat (k l ,k2 ) 

= 21Tks L k x-l fsG;:x (i,k l ) 

X=p,s Us 
'sG,x (i,k2)do.,.). (57) 

m 

= - L {Jx ± i"e -,k:, .. R1m(pE;",,) 
X=p,s m c 

'sG,:x (i;,k2) [ p G ;",:x (ic )]· 

The p-s forms of ( 49) are 

C V;, ' C V,,}}, = C V;, ' C V,,}} 00 

(55) 

(56) 

(61) 

In particular, in the forward direction, we obtain the s-s 
"forward energy theorem:" 

_ 41T ro[A. G (k
A 

k
A

) + '"", 1 ,k" .. R1m A 
= - 41TOJ2jP( L r k x- \G;:x (i,kl) 

x=p,s)s 
2 OIl E s "s' ~ e sEm k s . m c' 

'sG;:s(i;,k) [sGm:s(ie )]] = (s,s) Sseat (k,k). (58) 

The results of (55) and (58) differ from the results of Bar­
ratt and Collins (1:3.5, 3.9, 3.10) or Barratt (20:4.5,4.6), 
only in the way the vector multiple scattering amplitudes are 
defined. When the fixed configuration is reduced to a single 
scatterer, we recover the results of Dassios et al. (8:91, 92, 
94), and Varatharajulu (6:3.9,3.10). 

For p-s incident waves, we reduce (46) to 

, 
CeI»; '(sV,)}, + LCV;", ,CV" )}, 

m 

(59) 
, 

+ { p V;" L 5 V m,}, = o. 
m 

Therefore, (47) and (48) become 

(60) 

and 

'sG,:x (i,k2 )do.,.) 

and 

A A (r 3 A 
(P.s) Sscat (k.,k2 ) = 21Tkp x 'f . .Jsk ; pG;:x (i,kl ) 

·sG,:x(i,k2 )do.r). (63) 

In a manner similar to (50) and (51), we transform (52) 
and (53) into 

CV;"CeI»2)}, = - tel»;,( pV" )}; 

(64) 

and 
, , 

{pV;,'L sVm), = - Ltv;",,( pV" )}; 
m m 

Hence, the generalp-s "energy theorem" is obtained by combining (60), (61), (62), (64), and (65) with (59). We have 

[
41T kA G (kA kA ) 41TA G (kA kA )] 41T[~i" -,k;. .. R,m( AO ) G (AO kA )[ G" (A)] k~ I's ,:p .' 2 + k;Es,'p ,:s 2'. + k~ ~ e e pEm,:p 's ':p re. 2 p m,:p re 
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2 A A 

- k (p.s) Sscat (kH k2 )· 

p 

(66) 

The general s-p "energy theorem" is deduced from (66), giving 

[
41T A G (k

A 
k
A

) 41T k
A 

G* (k
A 

k
A

)] 41T[~ r -lk~,Rlm( A* ) G (AO k
A 

)[ G* (A)] kf Es,·p t:s I' 2 + k; 2·s t:p 2' 1 + k; ~ Jc e sEm,:p .p t:p fe' 2 s m,:p fe 

, ',k", .. R tm A * AO A A] 41T [' ,* - Ik.:c.Rtm AO M A • A 
+~lce (pEm2)·sGt:p(fc,kl) [pGm,:p(fe)] + k; ~lc e (.Em,:s)·pGt:s(fc,k2) [.Gm,:s(fe>] 

+ t le'k,c.Rtm(pEm2)·sG;:s(f;,kl) [ pGm,:s(fc )]] = - :s (s.p)Sscat(k l,k2). (67) 

Equations (66) and (67) show that 

(P.s) Sscat (k,k) = (s.p) Sscat (k,k) = 0 (68) 

in the forward direction, since each component of (65) and 
(66) contains a mixed scattering amplitude which is null for 
kl = k2• When the configuration is reduced to a single scat­
terer, Eqs. (65) and (66) correspond to the p-s, s-p reci­
procity relations of Dassios et al. (8:80, 81) or Varathara­
julu (6:3.13). 
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The nonlinear corrections to the Schrodinger equation based on the results of geometric 
quantum mechanics (GQM) are derived. Such theory derives quantum mechanics from the 
underlying Weyl space-time geometry associated with the classical ensemble of particle 
paths given by the solutions of the Hamilton-Jacobi equation. 

I. INTRODUCTION 

Geometric quantum mechanics1.2 (GQM) is a theory 
that attempts to describe all of the quantum mechanical 
phenomena based on the underlying Weyl space-time ge­
ometry associated with the classical statistical ensemble of 
particle paths (linked to a particle) given by the solutions 
of the Hamilton-Jacobi equation. (Of course that one re­
quires the Weyl symmetry to be broken at a certain length 
scale to yield a Riemannian space-time at scales I > I,;, 
where lw = scale at which the Weyl symmetry is broken.) 
The ensemble density acts as a true curvature source that 
affects the particle trajectories and, in turn, the particle 
trajectories affect the curvature which, in turn, depends on 
the ensemble density, and so forth. It is as a result of this 
nonlinear mechanism that the mass of the particle acquires 
an explicit and physical dependence on the Weyl scalar 
curvature. The relationship between the Weyl gauge poten­
tial and the ensemble density is obtained from a variational 
principle that yields the origins of the wave particle dual­
ity.2 When one imposes the condition that the ensemble 
average of the line integral (given by the worldline of the 
particle's path) must be related to the average of the 
Einstein-Hilbert action one obtains the desired relation· 
ship between Rand p (see Refs. 1 and 2). Such a relation­
ship is nothing but the celebrated Bohm quantum poten­
tial: 

- - R= - TO( [p} 1 (D- 2) 1 
4 D - 1 vP 

(
disregarding the Riemannian) 
component in RWeyl ' 

(1) 

which is obtained after the substitution ¢1J.t = [2/(D 
- 2}]aJ.t(lnplm} is made in Weyl'sexpressionforthesca­

lar curvature in any number of dimensions: 

R=RRiemann- [(D-l)(D-2}/4]¢JJ.t¢1J.t 

- (D - l)aJ.t¢JJ.t, (2) 

p=ensemble density, 

For convenience we give the expression to be used later: 

== Spatial component of the 
Weyl scalar curvature in D=4, 

where ¢1J.t is Weyl's gauge potential that gauges dilations. 1.2 
The derivation of the Schrodinger equation can be obtained 
from the nonrelativistic limit of the Hamilton-Jacobi equa­
tion 

(3) 

It is the purpose of this paper to explicitly derive the first­
order nonlinear corrections to the Schrodinger equation. 
There has recently been work on the precision tests of 
quantum mechanics and on the limitations that nonlinear 
corrections might impose on it. 3 Today we have at our 
disposal experimental techniques that are perfectly suited 
to test the theory of geometric quantum mechanics. This is 
the motivation of this work. 

II. NONLINEAR CORRECTIONS TO THE 
SCHRODINGER EQUATION 

Weare going to give a very simple derivation of the 
nonlinear terms that appear in the most general version of 
the Schrodinger equation. Since we perform the nonrela­
tivistic limit of the Hamilton-Jacobi equation we must first 
introduce to the reader our conventions. We work in a 
four-dimensional Weyl space-time, although our derivation 
works in any dimension as well. The signature is a Lorent­
zian one: ( -, +, +, + ). We work in a Riemannian-fiat 
background but not on a Weyl fiat one. After all, our aim 
is to reproduce all of our equations in a fiat Minkowski 
space. This is hinting to us that the metric of space-time is 
a passive physical entity in GQM and it seems no longer 
farfetched that it is plausible that for all these years we 
have been asking a totally meaningless question: Can ge­
ometry be quantized? (There has been work in the past 
where gravity appears as a result of a spontaneous symme­
try breakdown of a underlying metric-affine theory.) GQM 
shows that it is the Weyl affine connection, combined with 
classical statistical mechanics, which is responsible for 
quantum effects and that the metric has nothing to do with 
it at all. Greek indices run over 0,1,2,3. Ii = c = 1. 

The relativistic Hamilton-Jacobi equation for a parti­
cle iS1.2 
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(PIl )2 + m2(R) =0, 

where the mass function is 1,2 

m2(R) =m6 + iR· 
The nonrelativistic limit is performed as usual? 

Neglecting the time derivative: 

o 2 2 2 Rs 2( (p)2 Rs ) 
(p ) ::::: (p) + mo + 6"=mo 1 + m5 + 6m5 . 

The binomial expansion yields: 

(4) 

(5) 

(6) 

o 1 2 Rs mo( p2 Rs )2 
P -mo:::::-2 (p) +-12 --8 =Z+~6 + ... 

mo mo mo mo 

[valid for - 1 < (lj2/m~)R < 1]. 

If we wish to reproduce the standard form of the Schro­
dinger equation we just keep the terms linear in R only: 

pO _ mo::::: (l/2mo) (p)2 + (l/12mo)Rs 

=effective kinetic energy. 

The Hamilton-Jacobi equation is 

as 1 1 1 
~ --a =-2 (VS)2_-

2 
-,-V2( [Pl. 

t mo mo VP 
(7) 

The SchrOdinger equation is easily obtained after we use 
the explicitly Weyl-noncovariant form of the continuity 
equation for the probability current of the particle:2 

Va(;o vas) = -: (a=1,2,3) (8) 

and, after the substitution"" = .JP exp(iS) is made: 

a..p 1 2 

i at = - 2mo V "". (9) 

Notice that it is upon the use of Eq. (8) that the underly­
ing Weyl symmetry is explicitly broken. Had we used an 
explicit Weyl covariant continuity equation we would have 
obtained Weyl covariant expressions. In particular, the 
norm2 = 1""·""1 could have been gauged to a constant value 
as a result of the Weyl gauge degrees of freedom after 
imposing the gauge: 

CPIl = all In (p/mo) =0, 

~p/mo=constant in units of (Ii/moe) -2. (10) 

(We know that at the atomic scales there is no Weyl sym­
metry any longer since the spectrum of the atoms is inde­
pendent on the locations of these. Clearly lw < latomic') For 
more details see Ref. 2. [The connection between the 
breakdown of the Weyl symmetry and the use of Eq. (8) 
will be explained in a future paper.] 

It is a straightforward exercise to show that upon the 
inclusion of the curvature square terms one has 
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1 a"" 112 l[a 
i--= - --V ""-- i-lnl""·""1 

"" at 2mo "" 8mo at 

(11 ) 

Also straightforward is the inclusion of an external poten­
tial V in the rhs of the above equation. In presence of 
electromagnetic interactions, the prescription p-ieA ap­
plies also. This inclusion in the canonical momentum will 
clearly reflect the effects of the nonlinear corrections 
through the presence of A 4 terms. For consistency pur­
poses we require that the solutions to Eq. (11) do in fact 
maintain (li/moe)2IRI < 1. 

Above, the continuity equation has been used and the 
following identity: 

.1a"" ialnp as 
'~ at="2iit- at' 

which is obtained from 

""= [P exp(iS) 

in the explicit evaluation of 

a 
at [ [p(exp is)]. 

(12) 

The form of Eq. (11) is homogeneous as mentioned by 
Weinberg:3 Under ""--+A,,,,; Eq. (11) is invariant and it has 
the form 

.a"" ah(""·,"",t) 
I at a"". 

which is more general than the case studied by Weinberg. 
(Weinberg studied the special case that al""·""I/at = ° and 
also the special case where the Hamiltonian had no explicit 
time dependence. Our result is thus more general. In this 
work 1""·""1 does not mean the integrated norm but simply 
the probability.) 

It is up to the experiments to verify the validity of Eq. 
( 11 ). At first sight, the simplest thing to look for is cor­
rections of the type A 4 in the presence of electromagnetic 
fields. 

III. CONCLUSION 

We have explicitly derived the first-order nonlinear 
corrections to the standard Schrodinger equation directly 
from the theory of geometric quantum mechanics. Such 
corrections agree with the prescriptions of homogeneity 
given by Weinberg. Experimental confirmation of these re­
sults is warranted to test the validity of this theory. The 
homogeneity condition can be very simply understood as 
remnants of the Weyl invariance. This indicates that quan­
tum effects could be derived from an underlying Weyl in­
variance. For more details concerning this we refer the 
reader to Refs. 1 and 2. The consequences of this theory 
could be very important in all realms of physics, esspecially 
in defining quantum chaos, etc. The subject of current 
work under investigation deals with the vigorous study of 
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how the Weyl symmetry is broken down to yield a Rie­
mannian space-time. Notice that the expansion of Eq. (6) 
is performed in terms of a dimensionless parameter 

- 1 <~(~moC)2RweYI < 1. 

We know that Planck's length is basically obtained when 
the Compton wavelength of a particle of mass MPlanck is of 
the order of the Schwarzchild radius rs"Ei.2GM/C. Clearly, 
at rs:RRiemann Z l/~. 

Therefore, it is natural to expect that the signals of 
Weyl invariance begin to showup at Mp for a particle of 
mass equal to Mp. Numerical solutions to Eq. (11) are 
currently under investigation for the simplest models. It is 
there that we should look for departures from quantum 
mechanics if, indeed, they exist. Therefore, it is not neces­
sary to probe the Planck's length regime to begin to see the 
departures from linear quantum mechanics. However, if 
we wish to observe these departures we require to perform 
experiments with an extreme precision as pointed out by 
Weinberg.3 Also, we may depart from the nonrelativistic 
regime to cross the relativistic and even ultrarelativistic 
regime. Since it is difficult to set bounds on R Weyl it is far 
more convenient to solve Eq. (11) and then to look for an 
experimental confirmation in our current laboratories and 
accelerators without having to probe the Planck scale re­
gime. 
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APPENDIX: THE HAMILTONIAN FUNCTION AND 
FURTHER TOPICS 

We are going to present the explicit form of the Hamil­
tonian function that renders Eq. (11) in the form 

at/J a 
i at = at/J* h ( t/J*, t/J,t). 

In our case the Hamiltonian does not have an explicit time 
dependence although, in general, it might have. The energy 
in our case is thus a constant of the motion. The Hamil­
tonian h consists of two parts (set Ii = c = 1): 

ho=- - (1/2mo)t/J*V2t/J, 

hi=- - _1_!(t/J*t/J)(!!..ln(t/J*t/J»)2 
8mo at 

i 2 a ( t/J*t/J)2 
+ mo (t/J*V t/J) at In 1It/J*t/J11 

+ ~[t/J:t/J (t/J*V2t/J)
2 
]} . 

(One should add the Hermitean conjugate to h in order to 
have a real-valued expectation value for h. On the other 
hand, our results predict a nonlinear-induced decay for a 
"stable" particle through the presence of a small imaginary 
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component in the energy. Of course, stationary state solu­
tions would not suifer from this. Since the scope of a rela­
tivistic Hamiltonian framework is very limited we are as­
suming that Hamilton's equations hold and that the 
Hamiltonian coincides with the energy in our case which is 
not strictly a purely nonrelativistic one.) Since h is homo­
geneous of degree 1 (both in t/J and t/J*) :t/J-+A.t/J;h-+A.h. One 
must properly introduce a suitable normalization in the 
term 

a ( t/J*t/J) 2 

at In 1It/J*t/J1l ' 

where 1It/J*t/J1l is the integrated norm which we can choose 
to be equal to 1. We remind the reader that our expression 
It/J*t/JI is simply equal to p and not equal to the total inte­
grated norm as in the case discussed by Weinberg. 

We turn attention to the presence of nodes. Notice that 
a node for t/J implies a singularity in the expression for R: 

and the expansion in Eq. (6) breaks down. However, it is 
important to realize that nodes can in fact be present. The 

term in the lhs of Eq. (11) is balanced against the term 

11 2 

- 2mo~V t/J. 

Similarly, the term (purely imaginary) 

a 
i -InC t/J*t/J) 
at 

is balanced against the term 

in the rhs of Eq. (11). If nodes are to be present for the 
wave function t/J the term 

must approach infinity along the real axis whereas the term 

1 1 2 
--Vt/J 
2mot/J 

must approach infinity along the imaginary axis. (If we 
wish to have nodes for stationary states then we must re­
quire that t/J has an inflection point at the node, i.e., V2t/J is 
zero at such node.) Notice the crucial importance of the 
numerical coefficients in the nonlinear terms of Eq. (11). It 
is fairly obvious that a plane-wave solution (a stationary 
solution) satisfies Eq. (11). We could try to plug-in a 
Gaussian-wave packet 
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[ 
ilit] - 1/2 ( Et iPX) 

t/J(x,t)::::; 1 + 2(ax)~ exp - i -,; +""i" 

xexp[4(ax)~(l +-ili~~2(ax)~)] 
and see to what degree it satisfies Eq. (11) or gets close to 
satisfying it. We know that it satisfies the ordinary Schro­
dinger equation and it would be interesting to see how 
approximate a solution to Eq. (11) this Gaussian can be. 

What about Galilean invariance? We should expect it 
in the absence of external potentials which might break it. 
However, Eq. (6) contains an explicit factor of Ve2 in the 
R2 term once we insert the suitable e and Ii factors. (There 
is an explicit cancellation of e in the term linear in R.) 
Since the Galilean algebra is the Wigner-Ionu contraction 
of the Poincare algebra [ISO (3,1)] as a result of taking the 
e-- 00 limit, it is fairly clear that the 1/el terms in Eq. (11) 
are not going to be consistent with this Galilean limit. The 
ordinary Schrodinger equation is Galilean invariant 
although, in general, the introduction of external potentials 
can break the Galilean invariance. Galilean invariance is 
surely not a true symmetry of nature. Lorentz invariance 
is. Weinberg3 has failed to construct an explicit homoge­
neous, nonbilinear realization of the generators of the Gal­
ilean algebra, in particular, the Hamiltonian function (the 
generator of time translations). This, of course, does not 
imply that it is impossible to do so. However, if we could 
prove that there are no such homogeneous, nonbilinear 
realizations of the Galilean algebra this would surely be a 
signal that Galilean invariance should not be a cornerstone 
in the formulation of nonlinear quantum mechanics. It is 
true that our results are not strictly nonrelativistic! Geo­
metric quantum mechanics predicts nonlinear corrections 
to quantum mechanics-not only in the relativistic regime 
(see Ref. 2)-but also in the expansion ofEq. (6). True, a 
1/el appears because we rely on a geometric formulation 
and, hence, the speed of light and the curvature are natural 
ingredients in our theory. Notice that we were able to ne­
glect the term 
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1 1 if([p) 

?"'JP a? 
in Eq. (6) with respect to 

(1/ .jp) V2( .jp)' 
since the latter should be of the same order of magnitude as 

1 1 a(.jp) 
c"'JPat· 

For logarithmic nonlinear corrections to the relativistic 
Klein-Gordon equation and the Dirac equation, see Ref. 2. 
There is a whole other list of requirements that we must 
satisfy:4 to see whether we have invariance under space and 
time reflections; conservation of total momentum and an­
gular momentum for isolated systems; the solutions should 
satisfy the Ehrenfest theorem: 

d 
m dt (r) = (p), 

d 
dt (p)=( - VU) 

(where U is a potential). Also the principle of separability 
of noninteracting subsystems should hold. In general, non­
linear equations introduce correlations even for noninter­
acting subsystems. This is not highly desirable because no 
physical predictions could be made if the rest of the world, 
in the absence of forces, influences the detailed behavior of 
an isolated particle. 

These and more issues are the subject of further inves­
tigation. 
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The inclusion of self-interaction, in particular, gravitational into the quantum mechanics of a 
particle (first quantization) implies two necessary features: dealing with quantum mechanics 
involving the second time derivative and the construction of a variational principle maintaining 
the rescaling invariance of the wave function. The relevant variational principle is constructed 
which is not the principle of extremality of any action. Some general mathematical facts lain in 
the basis of this construction are discussed. 

I. INTRODUCTION 

In Ref. 1, it was shown that, in a stationary situation, it is 
possible to include gravitational self-interaction into the 
quantum mechanics of a particle without unsolvable prob­
lems. The inclusion offull gravity, without any approxima­
tions, suggests one to consider the relativistic Klein-Gordon 
equation. This explains exactly the author's interest to quan­
tum mechanics whose evolution equation contains higher­
order time derivatives. Certainly, the Klein-Gordon equa­
tion is the most primitive example of such an equation. 
However, although we do not know realistic situations in 
which an equation with third- or higher-order time deriva­
tives describes the evolution of a quantum system, we con­
sider theories2 with arbitrary-order time derivatives because 
all of them possess common features better understood in the 
general form. Note that the usual Schrodinger theory with 
the first time derivative is a somewhat degenerate case. 

There exists an objection against the probability inter­
pretation of the Klein-Gordon equation founded on the ob­
servation that this equation provides no positive definite 
probability density. Generally, with a norm square defined 
as a functional whose conservation follows from the evolu­
tion equation, the main "physical" trouble of quantum me­
chanics with higher time derivatives is that the norm square 
may acquire not only positive values. The definition that can 
be chosen for the norm square is, however, not unique: There 
are diverse conserved functionals. For instance, for the 
Klein-Gordon theory with electromagnetic interaction, dif­
ferent definitions were made in Refs. 3 and 4 on the one hand 
and Ref. 5 on the other hand. 

Following the definition of Refs. 3 and 4, the norm 
square acquires all real values: positive, negative, and zero. 
(In the latter case, the so-called associated vectors in the 
Hilbert space of states emerge.6

,7 ) Restriction to solutions 
with the positive norm square only, their superposition is 
unable to form a general solution; thus some modification of 
the probabilistic description is required. The interpretation 
of the Klein-Gordon equation for a charged relativistic par­
ticle in an external electromagnetic potential was discussed 
in Ref. 3 where a two-component formalism was constructed 
in a Hamiltonian form symmetric in the wave function and 
its extended time derivative (involving the electric poten-

tial) of the first order. The difficulty of the negative norm 
square was avoided3 by considering, instead of eigenvalues 
of energy, some energy expectation values always having a 
positive sign to be observables. In Ref. 4, a quantum system 
of two spinless charged particles in the cases of scalar and 
relativistic Coulomb interactions was investigated, the prob­
lems of normalization were discussed in the context of gen­
eral stationary wave equations, and an example of an asso­
ciated vector for a charged particle in an electric potential 
well was given. In the theory of the Bethe-Salpeter equation 
describing the relativistic two-body problem in quantum 
field theory, a similar normalization arises (the physical 
literature devoted to this subject is very volumenous, see, for 
review, Ref. 8). This is also the case for the quantum-relativ­
istic many-particle system in bound states.9 

Another definition for the norm square as an "energy 
integral" in Ref. 5 is always positive for free particles and 
remains positive for a wide class of physically meaningful 
potentials. Another version of a two-component formalism 
was constructed5 with a Hamiltonian that is self-adjoint in a 
Hilbert space with positive metric. 

The inclusion of self-interaction, in particular, gravita­
tional, into quantum mechanics encounters a lot of prob­
lems, and the most principal of them is exposed here. The 
theory of any complex field 'I' with linear in 'I' equations may 
be attempted to interprete as quantum mechanical, 'I' being a 
wave function. The cause is that linear equations are invar­
iant under the rescaling transformation 

'I' -> a'l', + complex conjugate, (1.1 ) 

where a is an arbitrary complex number with the modulus 
generally unequal to unity. \0 This invariance allows one to 
supply the norm square (full probability) with a fixed value, 
for example unity, if it is possible. But the ordinary action 
bilinear in '1'* and 'I' used in the field theories and leading to 
linear equations which looks like 11 

](2) = - J d 4x( -detgJlv)II2('I'~'I';' +,u2'1'*'I'), 

( 1.2) 

for the Klein-Gordon theory, is not invariant under (1.1), 
so, if one added the Einstein-Hilbert action to (1.2), the 
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resulting equations would not be invariant under (1.1). In 
order to maintain probability interpretation when including 
self-interaction, the candidate action must be invariant un­
der (1.1), guaranteeing that the norm alteration in the pro­
cess of interaction is not catastrophic. Such a variational 
principle exists, but, unfortunately, for discrete stationary 
states only. 

For wave functions with exponential time dependence 
(stationary states) the evolution equation with higher time 
derivatives is reduced to an eigenvalue problem with nonlin­
ear dependence on the spectral parameter. A variational 
principle leading to such a problem was discovered by Ray­
leigh in 1873 (Ref. 12) for a particular case of quadratic 
dependence in the context of classical dynamics. Later, it 
was extended to the cases of arbitrary quadratic depen­
dence13 and general polynomial dependence. 14 A great 
amount of purely mathematical studies were carried out on 
this subject; the relevant references and a subsequent ac­
count on the subject can be found in Ref. 15. In the Schro­
dinger quantum mechanics, this principle is known in its 
trivial form. 16 

The Rayleigh functionals in the role of some (we add 
eigen-) actions, as well as stationary equations and external 
currents derived from them, are invariant under (1.1); the 
external currents are equal to stationary bilinear ones divid­
ed by the norm square. However, the time dependence is 
inevitably lost. 

We now ask the question of whether a variational princi­
ple exists combining the positive features of the two above 
principles, namely, time dependence and invariance under 
(1.1)? In other words, what variational principle could give 
us equations and external currents that are both time depen­
dent and rescaling invariant? The answer is negative in the 
sense that there exists no suitable variational principle of 
extremality for any action. However, nobody forbids us to 
abandon the extremality principle and to try to construct a 
variational principle of averaged extremals for some action 
that possesses some desired qualities and resolves partly to 
the problem. This is the main program of this paper; to ac­
complish it we need certain mathematical constructions. Al­
though we often refer to the previous paper 1 where many 
physical questions were discussed, all the necessary informa­
tion is presented here. 

The paper proceeds as follows. First of all, we devote 
Secs. II and III to the properties of general solutions to the 
evolution equation with higher time derivatives. A part of 
the results known earlier is adduced in a general form. In 
Sec. II, the basic concepts, namely, equations, operators, and 
bilinear quantities are introduced. Some conserved function­
als are derived, and the simplest of them allows us to define a 
norm which is appropriate for our purposes. The revision of 
the norm concept entails the revision of expectation values 
that we define in our own way having the advantage of the 
definition in Ref. 3. We also give necessary and sufficient 
conditions for the modified expectation values to be con­
served in time. 

Unlike Ref. 3, in Sec. III, the two-component formalism 
of the Klein-Gordon theory is constructed more generally in 
a nonsymmetric form and further extended to the n-compo-
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nent formalism for a theory with the evolution equation con­
taining time derivatives of orders up to n. Our method allows 
us to see what quantity plays the role ofa (matrix) Hamilto­
nian and to demonstrate correspondence to the results of 
Sec. II. 

Stationary states are considered in Secs. IV-VI. In Sec. 
IV, the Rayleigh variational principle and functionals are 
described and applied to the Schrodinger and Klein-Gordon 
theories. In Sec. V, we study the criterion for each of the 
Rayleigh functionals associated with the same evolution 
equation to have coinciding sets of eigenfunctions and dis­
cuss modified orthogonality properties for eigenfunctions 
with different eigenvalues. In Sec. VI, the results ofSecs. IV 
and V are reproduced in and compared with the n-compo­
nent formalism. 

In Sec. VII, we describe our receipt for the formulation 
of variational principles of averaged extremals without and 
with gravity. 

II. EQUATIONS, BILINEAR ACTION, CONSERVED 
FUNCTIONALS, AND EXPECTATION VALUES 

Let a particle be described by a wave function defined in 
the Minkowski or Riemann space-time on the time semiaxis 
O"t < 00 and denoted by 'I' (t,x) [or sometimes ct> (t,x)]. 
Assume that at each fixed moment of time tf wave functions, 
e.g., 'I' (t,X) , and all their time derivatives up to some order 
m (m"n), e.g., 

(. a)m 
1 at 'I'(t,x) 1,= If' 

which we need are given in a closed three-space domain 0 
and belong to the complex Hilbert space .Y 2 (0) of quadrat­
ic integrable over 0 functions. The standard definition of the 
Hilbert space suggests the following inner product and 
norm: 

(ct>*(tf,X),'I'(tf'X» = f dO ct>*'I', 

ff Y2 = «'1'*,'1'» 112. 
(2.1 ) 

[At the same time (2.1) serves as the definition of the Dirac 
brackets to be used below, where dO is the invariant three­
volume element, but unlike standard notations we prefer to 
reserve the asterisk for complex conjugate functions.] Gen­
erally, the quantities (2.1) are not conserved in time. 

Let 'I' (t,x) satisfy the evolution equation 

A (. a) 
A(n) 1 at 'I' = 0, (2.2) 

A (n) being a formal differential operator of the order n linear 
in '1': 

A (. a) n A (. a)k 
A(n) 1- = L Ak 1- , at k=O at (2.3) 

where formal differential operators A k acting in .Y 2 (0) in­
volve partial derivatives with respect to three-space coordi­
nates x whose orders may, in principle, be unrestricted; the 
coefficients by these derivatives carry no dependence on time 
but may contain some smooth functions of x, which we de-
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note collectively by a(x) and their three-space derivatives of can be obtained from the complex conjugate variational 
any order, principle: 

Here and below, figure brackets mean that not only the func­
tion but also its derivatives of some order with respect to its 
argument enter theAcorresponding quantity. We consider 
only the operators Ak of this kind. If Eq. (2.2) is general 
relativistic, then each operator Ak should involve three­
space derivatives of the order n-k. In principle, instead of 
(2.3) it is possible to consider nonpolynomial operators ex­
panded into Taylor series if they are analytic functions of the 
argument ia / at. 

We will deal with a class of functions 2" ~ (0), 
2" ~ (0) c 2" 2 (0), which obey only such boundary condi­
tions on a~, the boundary of 0, that each formal differential 

A 

operator Ak can be associated with a uniquely defined 
bounded Hermitian operator denoted by the same symbol, 

A A A 

(<I>*,Ak '11) == (A [<1>*,'11) = (A t<l>*,'I1), 

or, formally, 
A AT, At 

Ak=Ak*=Ak' 

Below we use variational (functional) derivatives of 
two kinds applied to the two kinds of functional performed 
by integration either over 0 or over 0 and t: 

(3) _D_ f dO L({a(x)}) 
8a(x) 

- aL _ (~) "+ (~) "k _ ••• 
- aa aa,;" aa';k' , , 

8 f dt dO L({a(t,x)}) 
(4) 8a(t,x) 

= ~~ - (~~J'~ + (a~~J ,~v - ... , 

(i,k = 1,2,3;,u,v = 0,1,2,3). 

Consider an action functional bilinear in '11* and '11 at a 
finite time interval [0, T] : 

- 1 iT n [(A ( a)k ) len) =- dt L At -i- '11*,'11 
2 0 k=O at 

(2.4 ) 

Equation (2.2) can be obtained from the variational princi­
ple stating the extremality of (2.4), the extremum condition 
being 

8/(n) 
(4) 8'11* = 0. (2.5) 

The conjugate to (2.2) equation 

A fn) (i :t)'I1* = 0, (2.2') 

where the complex conjugate operator has the form: 

A fn) (i ~) = i A t( - i ~)k, at k=O at 
(2.3') 
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8/(n) 
(4) --=0. 

8'11 
(2.5') 

[len) = /rn) due to the integrand's form symmetric in time 
derivatives of '11* and '11; this form is, however, not unique: 
Integrands that differ from that in (2.4) by a total time de­
rivative are also possible.] Unless necessary, henceforth we 
omit complex conjugate equalities and statements since they 
can be obtained trivially. A 

Suppose formally a(x) = a(t,x) in the operators Ak in 
order to define an external bilinear a-current, Q ~~)' asso­
ciated with the field a: 

For instance, if the functions a are deciphered as the compo­
nents of the metric tensor gl'u(t,x), then (2.6) is proportion­
al to the stress-energy tensor Tp.u (see below). 

Now we exhibit the known examples of the operator 
(2.3) to be studied further. The Schr6dinger theory is de­
scribed by the operator 

Ao ) =A1(i :J +Ao, (2.7a) 

A A A 

Ao = - H, Al = 1, (2.7b) 

where H is a nonrelativistic Hamiltonian. 
In a general Klein-Gordon theory, we must write 

A(2) =A2 (; :J2 

+A1(i :J +Ao. (2.8) 

TospecifyAk (k = 0,1,2) considertheKlein-Gordonequa­
tion that ensues from the variational principle (2.5) applied 
to the action (1. 2 ) : 

(-detg~u)1I2(D-,u2)'I1=0, (2.9) 

where D is the D' Alambertian; hence, for a relativistic parti­
cle in the flat Minkowski space-time, 

A f _ 2 Af _ A f _ 
A 0 - f1 -,u, A 1 - 0, A 2 - 1, (2.8a) 

where f1 is the three-Laplacian. As for a free particle in a 
stationary (3 + 1 )-splitted Riemann space-time, we intro­
duce, in accordance with Ref. 11, the lapse function N, the 
shift functions Na, and the metric tensor Hab of the Riemann 
three-space V3 (0 C V3 ) which is employed for raising and 
lowering Latin indices and for performing the three-covar­
iant differentiation Va' Then, taking into account that 
( - det g~u ) 1/2 = N( det Hab ) 1/2 and omitting the factor 
(det Hab ) 112, we get from (2.9): 

A~ =Va(NHab- N;b)Vb -,u2N, 

Ag1 = -I -V +V - Ag2 =-. .(Na Na) A 1 
N a aN' N 

(2.8b) 

Here, we derive functionals conserved in time. Let '11 
and <1>* satisfy Eq. (2.2) and its conjugate (2.2'), respective­
ly. Contracting (multiplying and integrating over 0) the 
former equation for '11 with ( - ia / at) m<l>* and the latter 
one for <1>* with (ia / at) m'l1 gives 
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(( -i :Jm~*.A(nl(i :J~) =0, 

(Atnl(i :J~*,(i :Jm~) =0. 

(2. lOa) 

(2. lOb) 

Subtracting (2.10b) from (2.lOa), using the time indepen­
dence and Hermiticity ofAk and applying the formula 

(~*,(i :tY~) -(( -i :tY ~*,~) 
. a [P - I (( . a)q (. a)p - q - I )] = 1 - L - 1 - ~*, 1 - ~, at q=O at at 

which can be proved by the induction method, one may 
check the validity of the integral conservation laws 

i ~ C~n) [{~*},{~}] = 0, at 
for the functionals 

C~nl = i D;:'[{~*},{~}]' 
k=O 

where 

m k - m - I (( . a)1 + m * D k = L -1- ~, 1=0 at 
A (. a)k - 1- I ) 
Ak 1 at ~ , m<ok - 1; 

D;:'=O, m = k; 

D;:'= 
m - k - 1(( . a)1 + k * - L -I-a ~ , 

1=0 t 
A ( a)m-I-I ) 
Ak i at ~, m>k + 1. 

(2.11 ) 

(2.12) 

There are n + 1 functionals (2.12) for m = 0,1, ... , n involv­
ing time derivatives of ~* and ~ of orders not higher than 
n - 1. [For operators (2.3) with an infinite Taylor expan­
sion there exists an infinite number of such functionals.] The 
functionals (2.12) are also suitable for m>n + 1, but they 
contain time derivatives of orders equal to or greater than n. 
Generally speaking, the functionals (2.12) are independent 
in the sense that any functional C~nl cannot be obtained by 
any algebraic and differential operations from the function­
als with m <p without reference to Eqs. (2.2) and (2.2'), 
although it is not the case for such special solutions as sta­
tionary states (see Secs. IV and V). 

The functionals (2.12) have the property 

C0.'[{~*},{~}] = (C~nl [{~*},{~}])*, (2.13) 

consequently, they are real at equal arguments, 
1m C~nl [{~*},{~}] = O. 

In the Schrodinger theory for m = 0 and 1, 

C~\) = (~*,~> 
is the conserved standard inner product coinciding with that 
in (2.1) and 

I A 
C (I) = (~*,.H'II> 

is the conserved transition probability for the Hamiltonian. 
In the Klein-Gordon theory for m = 0,1,2, one has 
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+ (~*,AI ~>, 

C~2l = (( - i :t)~*,A2(i :t)~) - (~*,Ao~>, 

By analogy with the Schrodinger theory, define the con­
served inner product as follows:3.4 

o _ n k - I (( • i.) 1 * A (. ~)k -1- 1 ) 
C (nl - L L - 1 ~,Ak 1 ~ , k=I/=O at at 

the conserved norm square being 

JV2 = C~nl [{~*},{~}]. 

(2.14 ) 

(2.15) 

Taking (2.14), one could define the modified Hilbert space 
with an indefinite metric and there would exist a continuum 
of identical modified Hilbert spaces referred to every mo­
ment of time. 

Note that the "energy" inner product in Ref. 5 corre­
~nds to the functional C ~2l' in the case considered there, 
A2 = 1 and the question of the positix.eness of C ~2l reduces 
to that of non positive definiteness of Ao. In the Schrodinger 
theory, C ~ I l has the meaning of an energy functional as well, 
suggesting that C ~nl is always the energy functional for ev­
ery n. 

Now consider a Hermitian operator/acting in.2" 2 (0) 
which may depend on time, aJ / at # 0, i.e., the coefficients by 
three-spatial derivatives in/may depend on time. If one tries 
to modify the definition of the expectation value of/in the 
manner of Ref. 3, 

(ff[{~*},{~}])-2 i kil((_i~)/~*, 
k=I/=O at 

A A(. a)k-I-I ) AJ' 1- ~ , at (2.16) 

then this requires the modification of Hermitian conjugation 
for noncommuting / and Ak • A more relevant definition 
seems to be the following (denoted by a double bar over the 
symbol): 

/ = (ff[ {~*}{~}]) - 2 ~ i kil (( - i i.)/~*, 
2 k =I/=0 at 

A A ( a)k - 1- I ) 
{AkJ} i at ~ , (2.17) 

where, as usual, 

{Ak,}j =AJ+ /Ak. 

In employing (2.17), no modification of Hermitian conjuga­
tion is required since the anticommutator of any Hermitian 
operators (including noncommuting ones) is always Hermi­
tian: 
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so ( / ) = ( / r The definitions (2.16) and (2.17) are 
A A 

equivalent for commutingf and A k; in the Schrodinger theo-
ry, both of them are reduced to the standard expressions. 

Give the necessary and sufficient conditions for the ex­
pectation value (2.17) to be conserved in time. Differentiat­
ing (2.17) with respect to time and using Eqs. (2.2) and 
(2.2/) yields 

A A 1 {A . a A} [Ao, f] +- A1,I-f =0, 
2 at 

(2.18.1) 

A A {A. a A} 
[AI> f] + A2 ,1 at f = 0, (2.18.2 ) 

p=2, ... ,n. (2.18.p) 

In the Schrodinger theory, the total time derivative of an 
operator is determined from the condition that its expecta­
tion value is equal to the total time derivative of the operator 
expectation value. Thus the condition (2.18.1) for the 
Schrodinger operators (2.7 a ) says that the totaltime deri va­
tive of/vanishes: 

dA A A aA 
-f= -;(2.18.1) =i[H,J] +-f=O, 
dt at 

(2.19 ) 

the conditions (2.18.2) and the subsequent ones becoming 
trivial. In fact, (2.19) isjust the definition of the Schrodinger 
total time derivative. To extend this definition to the theories 
with higher time derivatives using the modified expectation 
value (2.17) one should solve Eq. (2.2) about ua/at)'I' that 
means to deal with operators inverse to A k' 

For the operators/independent on time, the set ofEqs. 
(2.18) degenerates into the conditions for / and each A k to 
commute. 

Although the functional (2.15) may take both positive 
and negative values (zero values should be excluded) and 
the norm may become imaginary, it may occur that the ex­
pectation value (2.17) which is always real has the positive 
sign irrespective of the sign of JV2. By the way, the unit 
operator describing the probability density always has the 
expectation value equal to unity. 

III. THE n-COMPONENT FORMALISM 

It is possible to describe a quantum system whose evolu­
tion is governed by Eq. (2.2) in the framework of the formal­
ism that we call n-component, in contrast to that presented 
in Sec. II called further monocomponent. The monocom­
ponent formalism is more universal in the sense that it can be 
applied to nonpolynomial operators as well. However, the n­
component formalism has an attractive feature, namely, the 
possibility to introduce the concept of a Hamiltonian for a 
quantum system. 

For the sake of clarity, start with the general Klein­
Gordon theory with Eq. (2.8) and construct the general 
two-component formalism. Redenoting 

'I' = '1'0' 

and defining 
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(3.1) 

i~'I'O='I'l' 
at 

we rewrite Eq. (2.8) in the form 

(3.2) 

(3.3) 

Thus (3.2) and (3.3) form a set of simultaneous equations to 
find '1'0 and '1'1 . However, instead of this set it is more con­
venient to take some operational combi9.,ations ofEqs. (3.2) 
and (3.3). First, applying the operator A 1 to (3.2) and add­
ing the result to (3.3), we obtain 

. a A A A 

1-(A1'l'0 +A2'1'd = -Ao'l'o. (3.4) 
at 

After that apply A2 to (3.2): 

(3.5) 

The set ofEqs. (3.4) and (3.5) may be reformulated in 
the matrix form 

(3.6) 

where I,K = 0, I, the summation convention over repeated 
indices is used; 

'I' K is a two-component column wave function belonging to 
the direct product of the Hilbert spaces 2' i (0.) 

® 2'; (0.) = (2'; (o.)f at each moment of time, whose 
conjugate element is the two-component row function 

'1'1 = ('I'~, 'l'T>. 

The elements of 2 X 2 matrices B IK and HIK are Hermitian 
operators: 

At A At A 

B1K=BIK , H1K=HIK , (3.7a) 

and the matrices are symmetric themselves: 
""" A A A 

BIK =BK1 , HIK =HK[, (3.7b) 

hence, they are self-conjugate in (2' 2 (o.)f, i.e., 
At A At A 

B[K=BKio H[K=HK[. (3.7c) 
A 

The matrix H[K has the meaning of a generalized matrix 
Hamiltonian. 

Conserved functionals can be derived by using the prop­
erty (3. 7c) only. Indeed, consider some two-component row 
function <1»1, satisfying, by analogy with Eq. (2.2/), the 
equation complex conjugate to (3.6), with I and K replaced, 

a A A 

- i - (B '::[<1»1) = H'::I<I»1. (3.6/) 
at 

As before, contracting, first, Eq. (3.6) with <1»1 and Eq. 
(3.6/) with 'l'K [and, second, with (- ia/at)Cf>1 and 
ua / at) IJI K' respectively], subtracting one result from the 
other and recalling (3.7c), we find the two conservation 
laws 

i~CO.l=O 
at ' 

( 3.8a) 
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with 

Co = (<I>T,BIXIJIX)' 

C I = (<I>T,HIXIJIX)' 

where, in components, 

(3.8b) 

(3.8c) 

A A A 

CO = (<I>t,A I lJIo > + (<I>t ,A2 1J1 1 > + (<I>t ,A21J10 ), 

C I = - (<I>~,Ao IJI 0 > + (<I>t,A2 IJII >. 
Returning to the identifications (3.1) and (3.2), on the one 
hand these expressions coincide with the functionals C~2) 
(the inner product) and C ~2) in the monocomponent for­
malism for the Klein-Gordon theory; on the other hand, 
they are some generalized analogs of the functionals C~I) 
and C ~I) in thx Schrooinger theory. Evidently, the meaning 
of the matrix B IX is to define the inner product (3. 8b) and 
the norm square in the two-component formalism. 

We could not derive the third conserved functional, a 
counterpart of C ~2)' by the above way, we could actually do 
it by using the column 

(

.a 
1) 1 at 
° .a 1-at 

for contacting with (3.6'), etc. However, it is impossible to 
proceed without referring to (3.1) and (3.2) and, strictly 
speaking, their differential consequences. 

Extend the above construction to the nth order operator 
(2.3). Recall (3.1) and define 

i~lJIo =IJI I , at 
i~IJII =1JI2 , at 
................................... , 

(3.9.1) 

(3.9.2) 

(3.9.n - 1) 

Using Eqs. (3.9), rewrite (2.2): 

Ani :t IJI n - I = - Ao IJI 0 - A I 1JI1 - ... - An - 2 IJI n - 2 

A 

-An_IlJln_ l , (3.10) 

and reorganize the set ofEqs. (3.9) and (3.10) in thefollow­
ing way. 

At the first step, apply the operators A I' A2 , ... ,An _ I to 
each of Eqs. (3.9), respectively, and add all the results and 
Eq. (3.10) together: 

+ ... + An _ I IJI n _ 2 + An IJI n _ I ) = - Ao IJI 0 . 
(3.11.1 ) 

At the second step, apply the operators A2, A3 , ... ,An to each 
of Eqs. (3.9), respectively, and add all the results together: 
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(3.11.2) 

A A A 

At the third step, apply theoperatorsA 3 , A4"",A" to the first 
(n - 2) equations of (3.9) [except the last, (3.9.n - 1)] 
and so on. This process is continuxd until, at the nth step, it 
remains to apply the operator A" to the first equation, 
(3.9.1): 

. a A A 

1- (AnlJlo) =AnIJlI' (3.11.n) at 
The reorganized set of Eqs. (3.11) rewritten in the ma­

trix form looks exactly like (3.6) but with 
I,K = O,l, ... ,n - 1, and 

lJIo 

IJI I 
1J12 

IJIn_2 
IJI n _ 1 

A A A A A. 

Al A2 A3 An_ 1 An 
A A A A 

A2 A3 An_ 1 An 0 
A A 

0 A3 An 0 
. ............................................................. . 

A 

An_ 1 
A 

An 
A 

-Ao 

0 

0 

o 
o 

A 

An 0 

0 

0 
A 

A2 
A 

A3 

0 0 

0 0 

0 0 
A A 

A3 An_ 1 
A A 

A,,_l An 

o 

0 
A 

An 

0 

o 
o 

where IJI X is an n-component column, that is, an element of 
(.2" ~ (o»n at each moment of time, a conjugate n-compo­
nent row element being 

IJIT = (IJIt, IJIt , ... , IJI~ _ 2' IJI~ _ I ), 
A A 

BIX andHIx arenXn operator matrices acting in (.2" 2 (0»" 
whose structures are evident. The K th lateral diaaonal of 
BIX from Bxo to Box consists of the operators Ak with 
k = K + 1 for K <n - 1 and the remaining elements are ze­
ros. In the matrix HIX , all the elements ofthe first row and 

A A 

the first column, except the element Hoo = - Ao at their 
intersection, are zeros; the remaining part of the matrix H IK 

A 

coincides with the matrix BIX with the first column and the 
last row (or the first row and the last column) erased, so all 
the properties like (3.7) hold. 

The generalization of the bilinear action (2.4), the vari­
ational principles (2.5) and (2.5') and the bilinear external 
current (2.6) on the n-component formalism (n;;;.2) is 
straightforward. By analogy with the preceding, the conser­
vation laws in the n-component formalism take place in the 
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same form as in (3.Sa), where (3.Sb) is the n-component 
inner product, with the only difference that I,K = 0,1, ... , 
n - 1· the conserved functionals (3.Sb) and (3.Sc) are 
equiv~lent to the first two of those in (2.12) [for the inner 
product (3.Sb) see also (2.14)] after the identifications 
(3.1) and (3.9). Concerning the remaining 
(n + 1) - 2 = n - 1 functionals (2.12), they are obtaina­
ble by more complicated ways with the use of (3.1) and 
(3.9). 

A remark should be made that, in the n-component for­
malism, any functional of the form 

(( . a)p * A- (. a)q ) ~ - I at cp ,F(p)(q) I at'll, 
A-

e.g., mentioned (2.12), withp,q = 2,1, ... ,n ~1 andF(p)(q) a 
set of some Hermitian operators (Fjp)(q) = F(p)(q»' can be 
associated with an operator matrix F PQ; for functionals with 
the property (2.13) the matrix FpQ has the properties like 
(3.7a) and (3.7b). 

It is worth emphasizing that if we considered the set of 
Eqs. (3.9) and (3.10) instead of the rearranged set (3.11) 
(cf. Ref. 17), then the corresponding matrices in (2" 2 (!l)Y 
possessing (3.7a) would not possess (3.7b), thus the con­
served functionals could not be derived by the way it was 
done. 

Let F be a self-conjugate, in general, time-dependent 
operator :!trix [i.e., (3.7c) holds only suggesting that the 
matrix elements may be not Hermitian]. Define its expecta­
tion value like (2.17): 
A A A A } 312 
F= «'II!,BLM'IIM»-I!('II1,{FIP,BpK '11K); (.) 

the necessary and sufficient conditions for (3.12) to be con­
served in time are 

A- A-

[BIL,FLK ] = 0, 

(3.13 ) 

where we imply the matrix anticommutator and commuta­
tor as follows: 

AA. AA AA 

{BIUFLK } = BJLFLK + FILBLK , 
AA AA AA 

[BJL,FLK ] = BJLFLK - FJLBLK • 

Note that due to the self-conjugateness ofFpQ and BIK the 
anticommutator in (3.12) is self-conjugate leading to 

( F ) = ( F )*. 
Ifwe compare the two formalisms, it is obvious that the 

set of n first-order equations (3.11) is equivalent to the nth­
order equation (2.2). Moreover, we see the identity of the 
inner products and the second conserved (energy) function­
als in both the formalisms, but as to the expectation values 
there is a subtlety. A-

If the operator F PQ is such that 

FPQ = 1pr;); 
where I PQ is the unit n X n matrix, then the expectation value 
(3.12) agrees with (2.17) in the monocomponent formal­
ism. However, in components, the conservation conditions 
(3.13) include all the equalities (2.1S) except (2.1S.2) 
which is replaced by the two conditions 
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[AIJ] =0, {A2'i :ti } =0, 

imposing the stronger restrictions upon}: The cause is that 
the conditions (3.13) have been derived under the assump­
tion that all 'II K (in particular, '110 and 'III ) are treated as 
independent variables. Ifthe identifications (3.1) and (3.9) 
were made before deriving the conservation, then we get just 
(2.1S.2). 

IV. STATIONARY STATES: THE RAYLEIGH 
VARIATIONAL PRINCIPLE 

Given a stationary wave function 

'lis (t,x) = exp( - iJ.t)1/!(x) (4.1) 

(1/!(x)E2"i (!l», the complex conjugate being 

'II~{t,x) = exp( + iJ. *t)1/!*(x), (4.1') 

the problem of finding the general solution to (2.2) is re­
duced to an eigenvalue problem with nonlinear dependence 
on the eigenvalues: 

A(n) (A.)1/!(x) = 0, 

where 

(4.2) 

(4.3) 

After the substitution of (4.1') into (2.2') the conjugate 
problem is 

A-

A tn) (A. *)1/!*(x) = 0, (4.2') 

with the conjugate operator 

AA-* (A.*) - ~ A.*kA* (4.3') 
(n) - ~ k' 

k=O 

The operator (4.3) is Hermitian, i.e., A Tn) = A tn)' if 
and only if A. is a real number. We concentrate our attention 
here and below to real A.. 

For real A., the functionals (2.12) with equal arguments 
automatically lose time dependence: 

C;':.) [{'II~},{'IIJ] 

= C;':.) [1/!*,1/!] 

= A. m( 1/!*,A in) (A. )1/!) - rnA. m - I (1/!* ,A(n) (A. ) 1/!) , 
(4.4) 

and A in) (A.) =dA(n) (A.)/dA. is always Hermitian. Evident­
ly, among the functionals (4.4) only any two are indepen­
dent without assuming that Eq. (4.2) is fulfilled. This is 
connected with the facts that the time derivatives of'll s are 
no longer independent and are proportional to the functions 
'lis and that only the two equalities (2.10) were used. After 
fulfilling Eq. (4.2), C;':.) = A. mC~n) so there is one indepen­
dent functional, e.g., C~n) defining as before the norm 
square: 

JY'l = C~n) [1/!*,1/!] 

= (1/!*,A in) (A.)1/!) 

n A-

= L kA. k-I(1/!*.Ak1/!)· ( 4.5) 
k=1 
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Assume that the operator (4.3) is compact in 1'2 (n) 
in order for its set of eigenvalues to be discrete. 6 To find this 
discrete set of eigenvalues, a known way is to determine all 
the extrema ofthe Rayleigh functionals. 15 

Here, we introduce the functionals to be used further: 

J(n) = T - IJ(n)' 

where J( n) is the bilinear action (2.4) and 

J(n) = T-11T dtC~n) 

iT n k - 1 (( a )/ 
= T - 1 dt L L - i - '1'*, 

o k~ 1 /~O at 
A (. a)k -/- 1 ) 
Ak 1- 'I' . at 

It is easily verified that 

J(n) [{'I':'},{'I'J] =J(n) [tJI*,tJI;A] 

= (tJI*1(n) (A)tJI), 

J(n) [{'I':'},{'I'J] = J(n) [tJI*,tJI;A ] 

= (tJI*,A (n) (A)tJI)· 

(4.6) 

(4.6') 

(4.7) 

(4.7') 

Compared with (4.7), the prime in (4.7') has the functional 
meaning: J(n) (A) = dJ(n) (A)ldA and J(n) is merely an­
other notation for the norm square (4.5). 

Let the following two conditions be satisfied. (a) The 
algebraic (in general, transcendental for n = 00) equation 
with respect to S, 

J(n)(S) = (tJI*1(n) (S)tJI) = ± Sk(tJI*1ktJI) =0, (4.8) 
k~O 

has no zero roots, and the functional S·I/ known as Ray­
leigh's 

S·k = S·k[tJI*,tJI] #0 

is an 1th (nonzero) root of (4.8), where 1 = 1,2, ... ,p<n 
enumerates the roots in the increasing order. 

(b) For all the roots of (4.8), the functional (4.7') is 
nonzero: 

J(n) (S·k) = (tJI*1 (n) (S.//)tJI) 

n A 

= L k(S·II)k-l(tJI*,AktJI)#O, (4.8') 
k~1 

unless tJI# 0, thus implying that the roots cannot be multiple. 
(We consider only real roots, S· k = S·k', although it is not 
necessary for the statements below.) 

Then: (i) An extremum condition of S· II, 

8S· k 

(3) 8tJ1* = 0, (4.9) 

is equivalent to the requirement that Eq. (4.2) is valid on 
this functional, i.e., 

All 
A(n) (S' )tJI(x) = 0, 

the /.k extremum value of S· k, Sfll' coincides with the 
/.K eigenvalue A/II (from S· k #0 it follows A/II #0) 
belonging to some J( subset of the eigenvalue set, 
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A =S·k =Svk[.I" .1. ] f.11 f.11 '/' f.II''/' f.11 ' (4.10) 

and the argument tJlf II supplying S·k with the f.-k extre­
mum value coincides with the f.K eigenfunction, the index 
f.k enumerating simultaneously the extrema of S·II and 
the eigenvalues in the order of increasing as well as the argu­
ments of S·k at the extremum points and the eigenfunctions, 
f. k = 0. k' 1.11 , .... (The complex conjugate statements are 
also valid. ) 

Indeed, the substitution of S·II back into (4.8) gives the 
identity 

Differentiating it implicitly with respect to tJI* and taking 
into account (4.8'), one gets 

(3) 8S·
k 

= -(J(n) (S·II»-IA(n) (S·II)tJI=0,(4.11) 
8tJ1* 

and the above statements become evident. 
In our opinion, because the extrema of the functionals 

S· k gives the equations, although stationary and restricted 
by the eigenvalue problem, it is fair to call the S·II quantum 
Rayleigh eigenactions. 

It is important to note that, for the eigenfunctions tJI .r II' 
the condition (4.8'), J(n) [tJI/II.tP.,rII;Afll] #0, means 
that their norm is nonzero and that, in turn, is equivalent to 
the absence of associated vectors in l' 2 (n). 4,6 

Recalling the dependence of A k on a (x), define the 
Rayleigh external a current, Q'(!) (x), as follows 

.11 8S· 11 

Q (a) = - (3) ~. (4.12a) 

Then, (ii) 1 (4.12a) is equal to the bilinear a current (2.6) 
divided by the norm square on the function 
'I'~k = exp( - is·kt)tJI(x), 

Q'i!) = (ff[ {t/I/*}, {t/I/}]) - 2Q ~~) ({'I'~II*},{'I'/}). 
(4.12b) 

In the extremum points with respect to the variables tJI* and 
tJI, not a, (4.12b) gives the stationary current Q~~) on the 
solutions of the eigenvalue problem divided by the norm 
square of corresponding eigenfunctions. 

In fact, by analogy with (4.11), 

8S·
k 

= -(J' (S·II»-l 
(3) 8a (n) 

8 A x (3) 8a (tJI*,A(n) (S·II;a)tJI)· 

Using the equality 

8 -
(4) 8 J(n) [ {'I'~ k.}, {'I'/I}] la(l,x) ~ a(x) 

a(t,x) 

8 J (S·II) = (3) 8a(x) (n) 

one can see the validity of (4.12b). 
If we establish 

(4.12c) 

a = (N,Na,Hab ), (4.13) 

then ( 4.12b) gives some components of the stationary stress-
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energy tensor divided by the norm square (see Sec. VII). 
The Schrodinger theory with the eigenvalue problem 

A A 

Am (Ii.)t/J = (Ii. - H)t/J = 0 (4.14 ) 

[cf. (2.7) 1 is a trivial particular case. An equation of the 
type (4.8) is linear in S Sch: 

SSCh(t/J.,t/J) - (t/J·,ift/J) = 0, 

and has the unique simple root that is real due to the Hermi­
ticity of if: 

SSch [t/J.,t/J 1 = ( t/J.,t/J» - I (t/J. ,ift/J) , 
and whose range covers the whole set of the eigenvalues; the 
variational derivative of S Sch with respect to t/J. is 

8S Sch 
A 

(3) 8t/J. = - (t/J.,t/J»-I(SsCh[t/J·,t/Jlt/J-Ht/J). 

For the general Klein-Gordon theory with the operator 
(2.8 ), the operator (4.3) acquires the form 

(4.15 ) 

and Eq. (4.8) is now 

S2(t/J·12t/J) + S(t/J·,AI t/J) + (t/J·10 t/J) =0. (4.16) 

Assume that 

(t/J·12t/J)=1=0 (4.17) 

for each t/J( x) E.!t' i (0) and that the discriminant D of Eq. 
(4.16) is non-negative; 

D [t/J.,t/J 1 = (t/J. 11 t/J»2 - 4(t/J· 10 t/J) (t/J. 12 t/J) ,>0. 
(4.18 ) 

The condition (4.18) resembles the overdamping condition 
for heavily damped dynamical systems where, in addition, 
conditions like (t/J. 1 k t/J) ,>0 for k = 0,1,2 (in our terms) 
hold. 13 

It is clear that 

A (2) (S) = 2SA2 + AI> 
(t/J·1 (2) (S)t/J) = 2S (t/J. 12 t/J) + (t/J·11 t/J). 

Owing to the conditions (4.17) and (4.18), Eq. (4.16) has 
two real roots (JI = 1,2): 

Substituting the roots (4.19) into the condition (4.8'), we 
bring the latter to the form: 

J(2) = (t/J·1 (2) (S1.2[t/J.,t/J])t/J) 

= + (D [t/J·,t/Jl )112=1=0, (4.20) 

and it leads to S I =1= S 2, that is, the ranges of S I and S 2 are 
separated; this can be readily seen from the inequalities 

(4.21) 

The formula (4.11) may be confirmed by a direct calcula­
tion. 

In the example (2.8b), the operator A ~ is always non­
positive definite (see the explanation in Ref. 1) The number 
(t/J·1 f t/J) is real due to the Hermiticity of A f, hence its 

2645 J. Math. Phys., Vol. 31, No. 11, November 1990 

square is non-negative. The operator A ~ is positive definite 
because N> O. Thus 

D g = ( t/J. 1 f t/J»2 - 4( t/J. 1 ~ t/J) (t/J. 1 ~ t/J) ,>0 

is always true as a consequence of the physical signature of 
g,..v· By virtue of (t/J. 1 ~ t/J). (t/J. 1 ~ t/J) ,,-0 and (4.20), the 
roots S I and S 2 have different signs and the inequalities 
( 4. 21) can be made more precise: if ( t/J·1 f t/J) > 0, then 

S I < - ( t/J. 1 ~ t/J) ) - I (t/J. 1 f t/J), S 2> 0, 

and if (t/J. 1 f t/J) < 0, then 

S I < 0, S 2 > ( (t/J. 1 ~ t/J) ) - I (t/J. 1 f t/J), 

similar inequalities standing for the corresponding subsets of 
the eigenvalue set. 

In the example (2.8a) which is a particular case of 
(2.8b), the nonpositive definiteness of A ~ is clearly demon­
strated: 

(t/J·1~t/J) = (t/J., (6. _j.l2)t/J) 

= - J dO (Va t/J·vat/J + j.l2t/J.t/J) ,,-0 

under the boundary conditions for t/J( x )E.!t' i (0) providing 
the Hermiticity of A ~. The roots are 

S 1,2 = + (t/J.,t/J» - 112«t/J.,(j.l2 _ 6.)t/J»1/2 

so that S I < 0 and S 2> O. Note that the quantity S 2 is the 
original Rayleigh quotient. 12 In this case, the condition 
(4.20) is equivalent to the absence of zero roots. 

Returning to the modified expectation values, for sta­
tionary states, the definition (2.17) transforms to 

(4.22) 

where by means of (4.8') the denominator is not equal to 
zero. In particular, for the operators (2.8a),A{;) (Ii.) = U, 
therefore, irrespective of the sign of Ii. , the expectation value 
( 4.22) is identical to that in the Schrodinger theory (com­
pare with the end of Sec. II). 

It is also worth remembering that the usual Heisenberg 
uncertainty relations are derived using the positive definite­
ness of the square, e.g., j2, of a Hermitian operator, 
j2 = (yq _ ijJ) 2, where q and jJ are canonically conjugate 
operators, [jJ,q 1 = - i, and yis a parameter. However, even 
if 

A A 

(t/J.,A (n) (Ii.)t/J) > 0, (t/J·,Pt/J) > 0, 

one cannot conclude the sign definiteness of the anticommu­
tator in (4.22). This fact entails a serious consequence that 
the modified uncertainty relation 

{ (
-)2} 112 {_ (_)2} 112 1 (~)2 -?I . (p)2 - jJ '>2 

is feasible not for all the functions t/J. Moreover, this is true 
for the general case of (2.11). 

v. STATIONARY STATES: ORTHOGONALITY AND 
SUPERPOSITION 

For Eq. (4.8) to be of the nth degree, suppose 

Alia D. Popova 2645 



                                                                                                                                    

(5.1) 

for all tP(X)E2"2 (n.) and let Eq. (4.8) havep<n real roots, 
JI = 1,2, ... ,p. Let S'd.'· be the set of values where the func­
tional J(n) (S) [see (4.6)] reaches extrema, i.e., where 
J en) (S) = 0, which are enumerated in the order .of increas­
ing as well, JI' = l',2', ... ,(p - 1)'. By assumption (4.8'), 
Eq. (4.8) has no multiple roots, hence the ranges of the func­
tionals Sd.' (spectral zonesl8

) are separated: 

S I <S,I' <S2 <S,2' < ... <S,(p-I)' <Sp. 

Obviously Af2"'
2 
> Af ,.", for any f,u, and f,.u, if 

Jl2 >Jl I • 

IfEq. (4.8) has exactly n real roots, the operator (4.3) is 
called hyperbolic. 141The definition of a hyperbolic operator 
requires also ( tP* ,A n tP) > 0, but due to i5.1) and the 
boundedness requirement for the operator An (see Sec. II) 
implying its continuity this quantity has a constant sign and 
the negative sign may be excluded by changing the sign of the 
operator A(n)]' 

Generally, the functionals S· II, JI = 1,2, ... ,n (which 
are not obliged to be real) obey the generalized Viete 
theorem: 

± S·li = - (tP*;ttP»-I(tP*)n-ItP)== -an_I> 
.U~I 

n A A L S·llsl·= (tP*,AntP»-I(tP*,An-2tP) 
. U. I . ~ \(. II <. I ') 

± S·IIS IS;1/' 
.11 •. I',:1/' ~ 1(.U<.I·<;1/') 

= - (tP*)ntP» -1(tP*)n_3tP) 

(5.2) 
................................... , 
S IS2 .. ·sn 

A A 

= (_1)n(tP*,AntP»-I(tP*,AotP) 

== ( - l)nao, 

where not all the real functionals a k are zeros identically, 
k = O,l, ... ,n - 1. 

Each discrete eigenvalue Af . // is related to one eigen­
function or a finite number I of eigenfunctions, i.e., it may be 
I fold degenerate. The question arises of whether different 
eigenvalues values A f. // for different JI may correspond to 
one and the same eigenfunction, let it be denoted by tP •. 
Allowing A f // to acquire complex values and supposing 
that there are no multiple roots S·II, the answer is given by 
the following statement. 

The necessary and sufficient condition for the eigen­
function tP. to be corresponded to n distinct eigenvalues A . II, 
JI = 1,2, ... ,n, each of them belonging to one and only one 
JI subset is the following: 

Ak tP. = f3 ~An tP. , (5.3) 
with f3 ~ real numbers not all of whose are zeros, 
k = O,l, ... ,n - 1. 

First of all, note that each f3~ in (5.3) can always be 
presented in the form 

f3~ = (rp*)ktP.)/(rp*)ntP.), (5.4) 
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(5.4 ) 

for every function rp for which the denominator in (5.4) is 
nonzero. In particular, f3 ~ may be presented as the function­
als a k in (5.2) on tP.: 

f3~=adtr.',tP.] (5.5) 

under the condition (5.1) for tP •. 
Differentiate each ofEqs. (5.2) with respect to tP*, 

n 8S'u 
. u~ I (3) 8tP* 

A A A 

- (tP*,AntP»-I(An-ItP-an-IAntP), 

n 8S' U 8S'/' L. (3) 8.1,* S I' + S,U(3) 8.1.* 
.U,.I ~I 'f/ 'f/ 
(.U<./,) 

A A A 

= (tP*,AntP» -1(An_ 2tP- a n- 2AntP), 
II ~S '/i k _U_ SiS&' 

. U. 1',.0/' ~ I (3) 8tP* 
(.U<.I·<&,) 

S.U 8S· IS;1/'+S.IIS.I· 8S''1/' 
+ (3) 8tP* (3) 8tP* 

A A A 

= - (tP*,AntP»-I(An-3tP-an-3AntP), (5.6) 

................................... , 

8S 2 8S n 
+SI -- .. ·sn+sls2 ... 3 

(3) 8tP* ( ) 8tP* 

= ( - 1)n( (tP*)n tP» - I (Ao tP - aoAn tP), 

then our statement becomes obvious. Indeed, proceeding in 
terms of quantities at extremum points, if tP. supplies an 
extremum with each S· II, i.e., if 

8S jI/ I 
(3) 8tP* .p~.p. = 0, (4.9* ) 

then this yields (5.3) with f3 ~ from (5.5). Conversely, 
owing to the assumption that S· II =/=S' I' for each JI =/=JY' 
andS' II =/=0 for eachJl, the set ofEqs. (5.6) is nondegener­
ate, thus, when the right-hand sides of (5.6) are zeros by 
(5.3) and (5.5), it has the only solution (4.9*) for each JI. 

The Klein-Gordon theory with the operators (2.8a) is 
an example of such a sort. The eigenvalues 
A = - A r == - A r = (1l 2 + k 2r ) 112 correspond to the 

f2 / '" ./ . 
eigenfunction tP / which, in turn, is an eigenfunctIon of the 
Laplacian in the domain n. with the eigenvalue ( - k:r ), 
!l.tP / = - k:rtP /' so that f3 { = - (1l2 + k:r) 1/2 and 
f3{ =0. 

Now turn to stationary states (4.1), '11 sl and '11 s2' with 
eigenvalues and eigenfunctions corresponding to different 
JI and f. II' To simplify notation, in this section, we put 
Al = A f, .. U,' A2 = A /? u, and tPl = tP/,. U,' tP2 = tP /? II,' 

Assume that the functions tPl and tP2' instead of Eqs. 
(4.2) and (4,2'), satisfy some weaker integral equalities: 
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(tPi" .A(n) (AI )tPl) = (A fn) (AI )tPi",tPl) = 0, 
A A 

(Afn) (A2 ) tPi" ,tPl ) = (tPi",A (n) (A2) tPl) = 0 . 

(5.7a) 

(5.7b) 

Multiplying (5.7a) by A2 m and (5.7b) by AI m, subtracting 
the second result from the first one, we actually repeat the 
derivation giving the conservation laws (2.11) and get the 
set of equalities equivalent to (2.11): 

n 

(A2 -AI )'C(;,) [tP!,tPl] = 0, 'C(;,) = L .@;:'[tPi",tPl]' 
k=O 

with the correspondence to the functionals (2.12): 

C (;,pD;:'[ 'II~, 'IIstl = exp(i(A2 - AI )t)'C (;,p.@Z', 

where 

k-m-I A 

.@Z'= L A/+mA/-1-1(tPi",AktPl)' m<k-l; 
1=0 

.@Z' = 0, m = k; 

m-k-l A 

.@Z'= - L A/+kAlm-I-I(tPi",AktPl)' 
1=0 

m>k+ 1. 

FornoncoincidingA2 andA I ,A2#A I (/1// #/2'// even 
1 2 

if vii 2 = viiI ), we can see the relations 

n 

L .@;:'[tPi",tPtl = 0, 
k=O 

which make sense of the orthogonality properties. Note that 
again among them only any two are linearly independent as a 
consequence of the only two initial equalities (5.7) used. [Of 
course after Eq. (4.2) is taken into account there is only one 
independent orthogonality property.] For the two ortho­
gonality properties, let us choose those with m = 0 and 
m = 1 and rewrite them in detail: 

Using the algebraic formula 

p-I 

A2P-AIP= (A2 -AI) L A2QAIP-q-1 
q=O 

(5.8a) 

valid for any integer p> 1, we rewrite (5.8a) in the form 
already given in Ref. 4 in which it holds for nonpolynomial 
operators as well 

A A 

(.',$ A(n) (A2) -A(n) (AI) ." ) = O. 
'P2' " 'PI 

/1.2 -/1.1 

The two orthogonality properties (5.8) have an inter­
esting appearance in the case of the quadratic operator 
(4.15). By (4.17), the relations (5.8) may be presented in 
the form 
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exciting associations with the Viete theorem for the roots of 
quadratic equations. However, this analogy does not work 
for an equation of a degree higher than 2 (n > 2), since every 
quantity (tPi".A k tP I ) cannot be expressed via A I and A2 by 
solving only Eqs. (5.7). 

In the Schrodinger theory, the orthogonality properties 
(5.8) are 

(tPi",tPl) = 0, (tPi",HtPl) = 0, 

thus the first of them is standard, as it should be; the second 
one is proportional to the first on Eq. (4.14). 

Having clarified the modified orthogonality concept, we 
are able to introduce the orthonormal set of eigenfunctions 
obeying (5.8a) whose norm square has the unity modulus: 

,.Yl = C~n) [tP";: ,tP"; "'] = ± 1. 

A solution to Eq. (2.2), which is a superposition of station­
ary states, is 

'IISUP(t,X) = J/ C f// exp( - iA rJ)tP";/)x), (5.9) 

where cf // are arbitrary complex coefficients. The ortho­
gonality property (5.8a) brings the cross terms to zero; the 
norm square acquires the value 

,.Yl [{'IIsup*} {'IIsuP}] = ~ ( + l)c *c . , - r, r, 
. // 

Note that the norm square is, as usual, an additive quantity. 
Keeping in mind the intention to explore nonlinear quantum 
mechanics with self-interaction where the superposition 
principle is invalid, we do not concern the completeness con­
cept for the set tP;rt //' [See Refs. 6 and 7 where the problem of 
completeness for eigen- and associated (root) vectors is 
solved for certain classes of linear operators.] To our pur­
poses it is enough to find a desired variational principle lead­
ing to solutions like (5.9). 

VI. STATIONARY STATES IN THE n-COMPONENT 
FORMALISM 

All the results ofSecs. IV and V can be transfered muta­
tis mutandi to the n-component formalism. 

The n-component version of a stationary state is given 
by the stationary n column 

'IIsK(t,x) = exp( - Ut)tPK(X) (6.1) 

and the stationary row 

'II~(t,x) = exp( + iAt)tP1(x) (6.1') 

(1m A = 0). The substitution of (6.1) into (3.6) yields the 
generalized eigenvalue problem linear in A, a certain matrix 
analog of the Schrodinger eigenvalue problem, 

A A 

ABIKtPK - HIKtPK = O. (6.2) 

The contraction of Eq. (6.2) with tP1 gives an equation like 
(4.8): 

Alia D. Popova 2647 



                                                                                                                                    

(6.3) 

By analogy with Sec. IV, we assume that for all f/!1 and f/!K 
satisfying (6.3) 

A 

(l/Jr,B1Kf/!K) ;60, 

then Eq. (6.3) has the unique root 

(6.4) 

it is real due to (3. 7c) and plays the role of a quantum eigen­
action. 

The extremum condition of (6.4), by analogy with (i), 

8Y .. A -I 
(3) 8l/Jr = - «f/!L,BLMf/!M» 

X (YB1Kf/!K - H1Kf/!K) = 0, 

is equivalent to Eq. (6.2) on Y and the set of extremum 
values of Y coincide with the whole eigenvalue set. 

Define the Rayleigh external a current in the n-compo­
nent formalism 

8Y 
!!2 (a) = - (3) 8a ' (6.5) 

the statement similar to (ii) can be made. 
Concerning the question of the equivalence of the two 

formalisms, in the particular case of stationary states, the 
identifications (3.1) and (3.9) are 

t/I'f,=APf/!., f/!p=APf/!, (6.6) 

and the equivalence of the set of n equations (6.2) on the one 
hand and Eq. (4.2) on the other hand is easily seen: The 
equation 

ABoKf/!K - HOKf/!K = ° 
(l = 0) is just Eq. (4.2) and the remammg equations 
(l = 1,2, ... ,n - 1) are trivial. To get one more corrobora­
tion of this equivalence, we show what quantity in the mono­
component formalism the functional Y corresponds to. Ex­
pressing it via the stationary states ( 4.1 ) of the 
monocomponent formalism (with real A) and using (6.6), 
one obtains 

A A 

Y = «f/!.,A (n) (A)f/!» - I [A (f/!.,A (n) (A)f/!) 

- <l/J*:A(n) (A)f/!)] =AI(4.2) , 

thus the functional Y differs from the spectral parameter A 
by a term proportional to the left-hand side of Eq. (4.2), 
hence'it coincides, in its extremum points, with the eigenval­
ues in the monocomponent formalism. Under the identifica­
tions (6.6), we have the same expressions (6.5) and (4.12a) 
in terms of the spectral parameter: for fixed JI, !!2 (a) coin­
cide with Q';:-) in each /./t' extremum point. 

For different stationary states (6.1') and (6.1), \{J:i 1 
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and \{J:i K' with the eigenfunctions r/11 and f/! I K and distinct 
eigenvalues A2 and AI' respectively, the orthogonality prop­
erties ensue from the conservation laws (3.8) (n compo­
nent): 

(r/1I,B1K f/!1 K) = 0, 

(r/1I,H1K f/!IK) =0, 

(6.7a) 

(6.7b) 

which coincide with (5.8a) and (5.8b), respectively, after 
the substitution of (6.6); the property (6. 7b) is proportional 
to (6.7a) on Eq. (6.2). 

Thus the mono- and n-component formalisms are both 
usable for the description of a quantum system, involving the 
set of eigenactions S· /t' or the unique eigenaction Y, respec­
tively. An essential circumstance is, however, that the choice 
of Y is appropriated to describe the whole spectrum, while 
the choice of a concrete eigenaction S· /t' may help one to 
exclude from consideration some "nonphysical" eigenval­
ues, for example, A < 0. The problem of making this choice is 
in the competence of the explorers. 

VII. THE VARIATIONAL PRINCIPLES OF AVERAGED 
EXTREMALS AND THE INCLUSION OF 
GRAVITATIONAL SELF-INTERACTION 

Consider the function 

\{Jsup(t,X) = Iexp( -ivkt)f/!k(X), (7.1) 
k 

where h is a nonidentified index as yet, v k are some numbers, 
and f/! k are some functions; let all these quantities be not for 
the present connected with an eigenvalue problem. We want 
to express the functions f/! k as functionals of \{J sup on the time 
interval [0, T], it is possible, at least, at the limit T -+ 00. The 
limiting procedure is necessary since if the ratio of any two 
numbers Y I,2 = 21T/hI,2:YI/Y2 is an irrational number, 
then there exists no finite common multiple T for all the Y, 
so that the integral equality we need is valid at the above 
limit: 

lim T- I (dtexp(i(vk\ -vk,)t)=812 , (7.2) 
T_ 00 Jo 

where 8 is a Kronecker symbol. Using (7.2) the desired 
expression is 

f/!k (x) = lim T -I ( dt exp(ivkt)\{Jsup (t,x). (7.3) 
T-oo Jo 

Consider the functional (2.15) on the function (7.1) 
without assuming that (7.1) is a solution to Eq. (2.2) and 
make this functional smoothed over time, then, recalling the 
definition (4.6') 

lim T- I (dt~[{\{J:'p},{\{Jsup}] 
T-oo Jo 

(7.4) 

If (7.4) exists, it means that the smoothed over time norm 
square for (7.1) is equal to the sum of partial norms square 
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for r/J ~ without reference to the orthogonality properties like 
(S.8a). 

Introduce a definition for the vatiational derivative of 
r/Jk with respect to 'l'sup. To obtain it directly, the limiting 
procedure in (7.3) is an obstacle. Define 

8r/J ~ (t') 

8'1' sup 

conditionally so as 

, _ 1 iT 8r/J~1 d'l'sup £ 
hm T dt (t') -- • -- = U\2 
T - 00 0 8'1' sup dr/J ~2 

then 

8r/J~ . 
(t.) -- = exp(lv~t). 

8'1'sup 
(7.Sa) 

Let Y [f/I}.,r/J~] be some real functional of its arguments 
Y = Y·, and define the variational derivative: 

8Y 8Y 8r/J~ 
(4') ~ = '} (3) 8.'. . (t') ~' 

sup '7' If' ~ sup 
(7.Sb) 

where the first multiplier on the right-hand side of (7.Sb) 
was defined in Sec. II, the second one is given by (7. Sa) . 
Actually, we use below the functions complex conjugate to 
those in (7.1) and (7.3) as well as variational derivatives 
complex conjugate to those in (7.S). 

Now we formulate the variational principles promised 
in Sec. I. These principles state that it is not the variational 
derivatives themselves but rather some weighted averages of 
them that should be employed. Let the two conditions (a) 
and (b) of Sec. IV be satisfied again and let (c) be 

0# I I J(n) (S·II) 1< 00, 

·£,/..11 
then: (iii) the equation 

(11;.11 J(n) (S.II») -I .II~/I J(n) (S·II) 

8S·
11 

( ·s //) 0 X(3) --exp -I . t = , 
8r/J· 

(7.6) 

where the sum is taken over all the vIt and all the extrema 
/.11 of S·II with respect to the variables r/J. and r/J as in the 
item (i) (see Sec. IV) is equivalent to Eq. (2.2): 

A(n) (i :t) \IIsup = 0, 

for the function 

\IIsup (t,x) = I exp( - is·llt)r/J(x). 
.. 11,7.11 

(7.7a) 

As before in (i), all quantities that referred to the extremum 
points coincide with the corresponding quantities of the 
eigenvalue problem with (7.8a) the superposition of eigen-
states 

'l'sup(t,x) = I exp( -iAI.t/)r/Jfll(X)' 
.. 1I.f'/l 

(7.7b) 

which is just (7.1) after the identifications -l 
= (vIt,/,.£ ),v~ ;= A

III
• 
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Some explanations are necessary. The index /.11 enu­
merating the extrema of S·II is suppressed at all the quanti­
ties in (7.6) in order to emphasize that (iii) does not state 
that the extrema must be known a priori, but states that the 
weighted average (7.6) ofthe extrema to be found leads to 
the solution (7.7b) to Eq. (2.2). One may, certainly, think 
these extrema independent thus returning to item (i) of Sec. 
IV. Each function r/J f II determined from (iii) [or (i) ] rep­
resents a one-parametric family off unctions, it means it may 
differ, e.g., from tlPPll in Sec. V by an arbitrary complex 
coefficient c r. II including zero, giving rise to various func­
tions (7. 7b). A part of r/Jr. II may not enter the superposition 
implying r/Jf II = 0 that yields the corresponding 
J(n) (S·II) = 0 (cf. Sec. IV). Thus the number of nonzero 
functions r/Jf II is not fixed a priori. 

To better illustrate (iii), after establishing the corre­
spondence "eigenvalues--extremum points," Eq. (7.6) can 
be rewritten with the use of the function (7.7b) and the 
definition (7.Sb): 

(II~I/ J(n) (S.II») -I .II~/I J(n) (S·II) 

X (4') £'T~. s·1I [rP/./I,r/J.r II] I it ~ = s '1 = O. 
UT /.// /.11 sup 

The principle (iii) is invariant under the transformation 
( 1.1) for the function (7.7), not for each r/J.7 II . 

To prove (iii), the second multiplier in (7.6) is 

- I A(n) (S·II)r/Jexp( - is' lit) 
·1I.f.11 

= - I A(n) (i.§...) \IIsup . 
.1I.fll at 

As to the first multiplier in (7.6), in terms ofthe func­
tion (7.7 a) the relation similar to (7.4 ) holds. Remembering 
that for every solution to Eq. (2.2), including (7.7b), the 
norm square is conserved in time, hence the time-smoothed 
norm square is equal to the nonsmoothed one. 

(iv) The expression defined as the above weighted aver­
age of the Rayleigh a currents, 

( I J(n) (S.II»)-I I J(n) (S'//)Q'(!) = Q(a) (x), 
.. II,r. 1/ • 1I.r. II 

(7.8a) 

where the sum is taken as in (iii), is equal to the time­
smoothed bilinear a current (2.6) divided by the time­
smoothed norm square on the function (7.7a): 

Q(a) = (ff[{'I'!p},{'I'sup}])-2 

X lim T - 1 ( dt Q~~) [{'I'!p},{'I'sup}]' (7.8b) 
T-oo Jo 

Evidently, the expression (7.8b) can be reduced to 
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Using the equality, which is easily obtainable, 

lim T 1 ( dt (4) 8 YIn) 
T-oo Jo 8a(t,x) 

X [{'I'!p},{'I'sup}] la(t,x) ~ a(x) 

= L (3) ~J(n) (S'/.') 
'/."/',11 8a 

one can check (7.8b). After establishing the above corre­
spondence, (7.8b) gives the time-smoothed a current (2.6) 
on the superposition of stationary solutions divided by the 
norm square for (7. 7b), which is the sum of the norm square 
for eigenfunctions involved. 

Generally speaking, the variational principles formulat­
ed may include or not include summation over all the Jt, 
otherwise they may include summation over a part of the Jt 
if we want to be confined to a physical situation chosen. 

The extension of the above principles onto the n-compo­
nent formalism is evident. Each variational derivative 

aY 
(3)~ 

where Y is the eigenaction (6.4), should be replaced by 

( A)-I A 8Y 
~ (1/Tt,B1K ¢K) ~ (¢!,BLM¢M)(3)~' 

Now we are ready to turn to the Klein-Gordon theory 
and to start the inclusion of gravitational self-interaction. 
Equation (4.8) and the condition (4.8') in this case acquire 
the form 

J(2) = S2( ¢*, ~ ¢) - S (¢.,t( ~ Va + Va ~)¢) 

+ (¢.,[Va(NH ab - N;b)Vb -1l2N l¢) =0, 

(7.9) 

J(2) = 2S("'*, ~ ¢) - (¢.,t( ~ Va + Va ~)¢)#O, 
(7.9') 

a positive root of (7.9) beingl9 

S 2 = ( 2( ¢., ~ ¢) ) -1 { ( ¢. ,i( ~ Va + Va ~)¢) 

+ [( (¢.,t(~ Va + Va ~)¢) r 
4(¢., ~¢).(¢., 

X [Va(NHab- N;b)Vb -1l2N ]¢)f
/l 

Earlier, I the action functional was proposed for a sta­
tionary self-gravitating quantum system inside n: 

SlOt = sg + S2 (7.10) 

(outside n, if we assume 'I' = 0, then the action S g is re­
tained only, implying certain continuity of gravitational 
quantities on an), 

sg = - (161Tk) 1 f dn[NP: + N IV(aNb) v(aN b) 
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(7.11) 

where k is a gravitational constant, the parentheses denote 
symmetrization of indices, Pab is the Ricci tensor of a sta­
tionary V3 ; for other notations see Sec. II. The expression 
(7.11) represents, modulo a surface term, the usual Ein­
stein-Hilbert action with the integration over time eliminat­
ed, so, in usual units, its dimensionality is energy. [Note that 
the negative root of (7.9) would lead to gravitational repul­
sion.] The extremum conditions of (7.10) are equivalent to 
the eigenvalue problem (4.2) with the operators (2.8b) 
which is restored here as (S2-+A.) 

[
..1.2 (N0 Na

) --iA -V +V -N N a a N 

+Va(NHab- N;b)Vb -1l2N ]¢=0 (7.12) 

and the set of the stationary Einstein equations in the 3 + 1 
splitting. Henceforth, making the identification (4.13) and 
recalling the formula (4.12), these equations are 

_ 81TkH - 1/2(3) 8S
g 

=.N2(R 00 +].. N - 2R) = 81TkQ, 
8N 2 

Q=.ff- 2·[U(¢·,¢) + V(¢·,¢) 

+ N lNawa(¢·,¢)]; 

k - 1/2 8S
g 
-NR 0 - 8 kQ 81T H (3) --= a - 1T a' 

8Na 

Qab =.ff- 2. {Zab (¢.,¢) - Hab [U( ¢.,¢) 
- V(¢·,¢) -N-1NCWc(¢·,¢)]}, 

where 

U = iHabZab + 1l2¢.¢, 

V = N -2qNaN bZ ab + A. 2¢.¢), 
Wa = iAN - 1 (¢~ ¢ - ¢.¢'a), 

Zab = ~¢'b + ¢·'b¢a' 

R 00, R ~, and Rab are the components of the Ricci 4-tensor 
and R is the Ricci scalar, ff- 2 is the norm (7.9') inverse 
square. The right-hand sides of (7.13) are related to the 
definition ( 4. 12a) and the components of the bilinear stress­
energy tensor T/Jov as follows l9 

Q _ Q2 H-1/2_ff-2N2Too 
- - (N) - , 

Q = Q2 H -1/2 =ff- 2NT O 
a (N") a' 

Q = - 2Q 2 H 1/2 N - 1 = ff- 2T . 
• (H~ • 

The variational principle of extremality of (7.10) de­
scribes a particle in a single stationary state and is irrelevant 
for a particle in a superposition of stationary states. In the 
latter case the bilinear stress-energy tensor T/.Iv contains os-
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cillating cross terms with the factors like exp{i(A2 - AI )1) 
and thus is nonstationary. That the oscillating terms should 
disappear after smoothing in time suggests to describe the 
time-smoothed situation by the approximate action func­
tional l 

SIOI=sg+ ~ p.S2[~,tP.]. £.t '/ ./ ~/ 
(7.14) 

./ 

Here, S g and S 2 are the above functionals, the numbers p/ 
play the role of some probabilities given a priori, O<.,p/ <. 1 
and 1:/ p/ = 1, the index,' has an abstract meaning at the 
present, tP/ are the functions to be determined. The extre­
mum conditions for (7.14) lead to the same equations as 
(7.12) for each tP. and the set of stationary Einstein equa-

./ 

tions with the unchanged left-hand sides [cf. (7.13)] but 
with other sources: 

(7.15) 
./ 

(each quantity "Q" contains the inverse norm square of 
tP . ). 

./ 

The variational principle of extremality of (7.14) has 
the drawback that the probabilities are fixed and not con­
nected directly with the solutions. tP/. Moreover, the action 
(7.14) and the equations ensued from it are invariant under 
the range of transformations wider than (1.1): 

tP./ -+a/t/J/, + complex conjugate, (7.16) 

where a/ are arbitrary complex numbers attached to each 
t/J/. The requirement of invariance under (7.16) is unneces­
sary and is not fulfilled in the usual Schrodinger theory. In 
connection with that, we include gravitational self-interac­
tion into the variational principle of averaged extremals. 

Take as a basis the action (7.10) and extend to it the 
principles (iii) and (iv). Because S g is independent explicit­
lyon tP* and tP the principle (iii) for the operators (2.8b) 
stands as before with the only difference that it must be for­
mulated in common with the following principle. 

Let the conditions (a), (b), and (c) be satisfied, then: 
( v) the equations 

where the sum is taken over all the extrema of S2 with re­
spect to tP* and tP, are equivalent to the set of stationary 
Einstein equations with the time-smoothed stress-energy 
tensor from (iv). 
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With S g independent explicitly of tP* and tP 

~sg ( )-1 ~S2 
(3) -~- + ') J(2) (S2) ') J(2) (S2). (3) -- = O. 

a 7,7, ~a 

(7.17) 

Clearly, the set (7.17) is just the set (7.15) after identifying 
/=/2 and 

fJ/. = Pf., = (~J(2) (S2») - I' J (2) (S2 r.,)' 

The probabilities Pf2 are now determined as the functionals 
of "'/'2' not arbitrary numbers. As it was shown in Sec. IV 
and Ref. 1, J (2) (S2) >0 for any gravitational field, thus due 
to (7.9') for each /2 :Pf2 > 0 if tPf2 #0 and Pf2 = 0 if 
tPf2 = 0; it means that the number of nonzero P f2 and tP f2 

is not fixed before finding the solutions. Obviously, 

') Pf2 = 1. 
7, 

The inclusion of any interaction, e.g., gravitational, 
brings intrinsic nonlinearity into a quantum system.20 The 
superposition principle is invalid now: a linear combination 
of solutions is no longer a solution. In the presence of self­
consistent gravity, the principle (iii) can be also reduced to 
the principle (i). However, the extrema of S2 cannot be 
found individually, but only simultaneously in a common 

"'-
self-consistent metric that enters the operators A k' The space 
of states is now non-Hilbert; it is separated into finite-or infi­
nite-dimensional nonlinear subspaces, depending on the 
number of the functions tPf2 involved. In other words, each 
of these subspaces contains the states tP f2 which are self­
consistent solutions (not combinations of those) creating a 
common time-smoothed gravitational field. Within every 
subspace, all the results of Sec. II concerning conserved 
functionals, inner products norms, and expectation values 
are true. The cause is that the nature of any function a(x) 

was not specified. Likewise, for eigenfunctions tP2 and tPI 
with distinct eigenvalues A2 #A I , the orthogonality proper­
ty ofthe type (5.8a) in the common metric holds: 

We do not speculate here about the statistical interpre­
tation, it was done in Ref. 1. Our main assertions remain 
unchanged after replacing the variational principle of extre­
mality of (7.1) by that of averaged extremals. 

In conclusion, first, we should like to add that the 
Klein-Gordon theory in the two-component formalism may 
be used to include self-interaction as well, but then the diffi­
culty of the norm non positivity arises again. Hence, to our 
opinion, the monocomponent formalism with the chosen S 2 

is more preferable. Nevertheless, this difficulty is less essen­
tial in nonlinear quantum mechanics just owing to the failure 
ofthe superposition principle; at any rate a "general" solu­
tion cannot be decomposed upon individual eigenfunctions. 
Second, we emphasize the importance of the rescaling invar­
iance ( 1.1 ) for a quantum system and ask whether the extra-
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polation of the variational principle of extremality from clas­
sical theories to the quantum sphere is true at all? Possibly, 
the variational principle of averaged extremals is more suit­
able for quantum systems. Otherwise, we must choose 
between rescaling invariance and the extremality of an ac­
tion. 
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An abstract asymptotic theory of a family of self-adjoint operators {HK}K>O acting in the 
tensor product of two Hilbert spaces is presented and it is applied to the nonrelativistic limit of 
the Pauli-Fierz model in quantum electrodynamics and of a spin-boson model. It is proven 
that the resolvent of HK converges strongly as K-+ 00 and the limit is a pseudoresolvent, which 
defines an "effective operator" of HK at K;::;; 00. As corollaries of this result, some limit 
theorems for HK are obtained, including a theorem on spectral concentration. An asymptotic 
estimate of the infimum ofthe spectrum (the ground state energy) of HK is also given. The 
application of the abstract theory to the above models yields some new rigorous results for 
them. 

I. INTRODUCTION 

This paper consists of two parts: one is concerned with 
an abstract asymptotic theory of a family of self-adjoint op­
erators and the other presents its application to the nonrela­
tivistic limit of the Pauli-Fierz l

-
9 and a spin-boson 

model. 10-15 

The Pauli-Fierz model is a model in quantum electro­
dynamics and describes a nonrelativistic one-electron atom 
coupled to a quantized radiation field. It is known that the 
model is a realistic one in the sense that in a nonrelativistic 
region, it explains well some physical phenomena such as the 
Lamb shift, although the explanations are usually done by 
using formal perturbation calculations to which rigorous 
mathematical basis has not yet been given. Only a few math­
ematically rigorous results have been obtained for the mod­
el.4

•
5

•
7

•
9 The spin-boson model we consider describes a two­

level atom coupled to a quantized Bose field and can be 
regarded as a simplified version of the Pauli-Fierz model. 8 

The nonrelativistic limit we study on these models is a scal­
ing limit of the speed oflight at the same time as the coupling 
constant of the models gets a scale transformation, which, as 
far as we know, has not been discussed in the literature. 

To treat the problem of the nonrelativistic limit of the 
Pauli-Fierz and the spin-boson model in a unified way, we 
first present in Sec. II an abstract asymptotic theory of a 
family of self-adjoint operators {H K} K > 0 acting in the tensor 
product of two Hilbert spaces. The self-adjoint operator HK 

is an abstract version of operators unitarily equivalent to 
Hamiltonians of some models of an atom coupled to a quan­
tized radiation field, including the Pauli-Fierz and the spin­
boson model. We prove that the resolvent of HK converges 
strongly as K-+ 00 and the limit is a pseudoresolvent, which 
defines an "effective" operator of HK at K;::;; 00. Introducing a 
concept of "partial expectation" of operators, we represent 
the effective operator more explicitly. In applications, par­
tial expectations can be used also to describe "fluctuations" 
caused by a quantized radiation field on an atom (see Sec. 
III). Further, we obtain an asymptotic estimate of the infi­
mum ofthe spectrum (the ground state energy) of H

K
• The 

abstract theory presented here is closely related to asympto-

tic theories given in Refs. 16-18. But our class of HK is differ­
ent from the operators considered there in the scaling order 
with respect to K. There may be different asymptotic theories 
depending on the scaling order of K and the form of the rel­
evant operators. We also discuss the spectral concentration 
ofHK • 

In Sec. III we discuss the Pauli-Fierz model, which, as 
mentioned above, describes a one-electron atom coupled to a 
quantized radiation field. For a mathematical generality, we 
consider the case where the one-electron atom is placed in 
the d-dimensional space (d-;;.2). The total Hamiltonian of 
the model is given by a self-adjoint operator H{e,e) with 
parameters c > 0 and eelR\ {o} denoting the speed of light 
and the elementary charge (the coupling constant in this 
model), respectively. The scaled Hamiltonian is defined by 
H{K) = H(e{K),e{K» with e(K) = Ke and e(K) = ,(312 e. 

The nonrelativistic limit we study is taken in the sense of the 
scaling limit K-+ 00. Since le{K) 1-+ 00 as K-+ 00, the nonrela­
tivistic limit is a scaling limit of the speed of light at the same 
time as the magnitude of the coupling constant becomes infi­
nite. We show that H{K) is unitarily equivalent to an opera­
tor lI(K), which is of the form of HK discussed in Sec. II. 
Applying the abstract theory in Sec. II to II (K), we find that 
the effective operator of lI(K) is a Schrodinger operator 
HA,eff' In the case d = 3, the potential operator ofHA•eff coin­
cides with the effective potential that Welton3 proposed to 
calculate some observable effects of the quantized radiation 
field such as the Lamb shift. In Ref. 3 the effective potential 
was derived by physical arguments. We derive it as a scaling 
limit in the sense described above, starting from the total 
Hamiltonian H{K). This does not only justify rigorously the 
effective potential of Welton but also clarifies a mathemat­
ical meaning of it, in other words, in what sense the effective 
potential is "effective." Further, we show that the ground 
state energy of the model is nondecreasing as a function of K 

and obtain an estimate ofthe ground state energy, which, to 
our knowledge, has not been given so far in the literature. We 
also prove that the spectrum of H(K) is asymptotically con­
centrated on the spectrum of H A•eff "locally" as K-+ 00. 

In Sec. IV we consider the spin-boson model. The non­
relativistic limit of this model is also a scaling limit of the 
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speed of light at the same time as the magnitude of the cou­
pling constant becomes infinite, but the scaling order of the 
coupling constant is different from that of the Pauli-Fierz 
model. We show that the total Hamiltonian of the model is 
unitarily equivalent to an operator H(K) of the form of HK in 
Sec. II. We derive the effective operator of H(K). Moreover, 
we show that the ground state energy is nondecreasing in the 
scaling parameter K and obtain an estimate of the ground 
state energy, which siightly improves that given by Davies. 10 

We also give a meaning to the transition probability between 
the two degenerate ground states of the model without the 
atom part (cf. Ref. 11). Finally, we prove the existence of a 
"local" spectral concentration of the total Hamiltonian. 

In the last section some remarks are given. We conclude 
the present paper with an Appendix, where we prove some 
limit theorems related to the strong convergence of resol­
vents in which the limiting operator is a pseudoresolvent. 

II. AN ABSTRACT ASYMPTOTIC THEORY 

In this section we present an abstract asymptotic theory 
for a class of self-adjoint operators. The theory developed 
below may be formulated in a more abstract setting using a 
Banach space as in Ref. 16 and for a more general class of 
operators. In the present paper, however, we take a Hilbert 
space formulation and restrict our consideration to a class of 
self-adjoint operators, which allows us to obtain more con­
crete and stronger results in some respects. 

In what follows, we use the following notation: (',' );Y' 

and li'ILy denote the inner product and the norm of the 
Hilbert space Y, respectively. If there is no danger of confu­
sion, then we omit the subscript Y of them. The domain 
(resp. range) of an operator T is denoted by D( T) (resp. 
Ran T). For bounded operators T, we denote by IITII the 
operator norm. By I we denote identity. 

Let Yand JY be two Hilbert spaces and 

2"=Y®JY. (2.1) 

Let A and B be non-negative self-adjoint operators in Yand 
JY, respectively. We assume that 

Ker B #{O}. (2.2) 

Let {CK } K> 0 be a family of symmetric operators in 2" satis­
fying the following conditions. 

(i) For all K>O, D(A®I)CD(CK) and 
C

K 
(A ®I + A) - 1 is bounded for all A >0 with 

lim IICK(A®I+A)-IIi=O, 
A_ 00 

where the convergence is uniform in K;;'Ko for some Ko > O. 
(ii) For all A > 0, C

K 
(A ® I + A) - 1 is strongly contin­

uous inK>O. 
(iii) There exists a symmetric operator C in 2" such 

that D(A ® I) CD( C) and for all A > 0, 

s-lim CK(A ®I +A) -I = C(A ®I +A) - 1, 

where s-lim means strong limit. 
For each K> 0, we define 

HO,K =A ®I +KI®B. (2.3) 

The above property (i) of CK implies that for every E> 0, 
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there exists a constant Ao = Ao (E,Ko ) > 0, independent of 
K;;'Ko, such that for all A;;'Ao, 

IICK'I'II<EIi(A®I+A)'I'II, 'l'ED(A®I). (2.4) 

Since I ® B is non-negative and commutes with A ® I, it fol­
lows that for A;;'Ao, 

IICK'I'II <Ell (HO,K +A)'I'Ii, 
'l'ED(HO,K) =D(A®I)nD(l®B)==DA,B' (2.5) 

Hence, CK with K;;'Ko is infinitesimally small with respect to 
HO,K' Therefore, by the Kato-Rellich theorem (e.g., Refs. 19 
and 20), the operator 

HK = HO,K + CK (2.6) 

with K;;'Ko is self-adjoint on D A,B and essentially self-adjoint 
on every core of HO,K' Further, HK is bounded from below 
with 

(2.7) 

where O<E< 1 and A;;'Ao(E,Ko )' The ground state energy 
EK of HK is defined by 

EK =infu(HK ), (2.8) 

where u(T) denotes the spectrum of operator T. By (2.7), 
EK is bounded from below uniformly in K>Ko: 

Eo == inf EK > - 00. (2.9) 

Our aim is to consider the limit K ..... 00 of HK and to give 
an asymptotic estimate of EK for large K. 

Let Po be the orthogonal projection from JY onto 
Ker B. Then it follows from property (iii) ofCK and (2.4) 
that (l ® Po )C(l ® Po) is infinitesimally small with respect 
to A ® I. Hence, by the Kato-Rellich theorem again, the op­
erator 

(2.10) 

is self-adjoint on D(A ® I) and bounded from below. It is 
easy to see that the resolvent of H 00 commutes with I ® Po, 
Hence, H 00 is reduced by Ran I ® Po = Y ® Ker B. We de­
fine 

(2.11 ) 

The first of the main results in this section is the following. 
Theorem 2.1: For all zeC with 1m z#O or for z < 0 with 

Izl sufficiently large, (HK - z) - 1 is strongly continuous in 
K;;iKo and 

(2.12) 

Further, 

(2.13 ) 

Proof: Let A > 0 be sufficiently large so that 
-AEp(HK)np(Hoo )np(HO,K) for all K;;'Ko, wherep(T) 

denotes the resolvent set of T. Iterating the second resolvent 
formula with respect to the pair (HK,Ho,K)' we have 

N 

(H
K 
+ A) -I = L ( - 1)"(HO,K + A) -IT= + RN(K), 

"=0 

Asao Arai 2654 



                                                                                                                                    

where 

TK = CK (HO,K +..i) -I, 

and 

RN(K) = (-1)N+I(H" +..i)-IT~+I. 

It follows from (2.5) that 

IIRN(K) I! < (Eo +..i)-I?+I. 

Hence, taking E < 1, we see that for ..i > 0 sufficiently large 
00 

(HK+..i)-I= I (-I)"(Ho,K+..i)-IT; (2.14) 
"=0 

is norm convergent uniformly in K';;;.Ko. It is easy to see that 

s-lim (HO,K +..i) -I = (A ®I +..i) - 'I ®Po' 
K- 00 

Further, by property (iii) of C", we have 

By the uniform convergence of the series on the right-hand 
side (rhs) of (2. 14), we can interchange the limit K -+ 00 and 
the summation :I n to obtain 

00 

s-lim(HK +..i)-I = L (-l)"(A®I +..i)-I 
K-oo n=O 

X{C(A ®I +..i) -I}"(/®PO)' 
(2.15 ) 

where 

C= (/®Po)C(/®Po ), 

and we have used the fact that I ® Po is a projection. The rhs 
of (2.15) is equal to 

(Hoo +..i) -I(/®PO)' 

Thus (2.12) withz= -..i follows. Once (2,12) is proved 
for some z = - ..iElRnp(HK) np(H 00 ), it can be extended 
to the case 1m z:j:O by mimicking a standard argument for 
resolvents (e.g., the proof of Theorem VIII.19 in Ref. 21). 
The strong continuity of (H" - z) - 1 in K follows similarly, 
Inequality (2,13) follows from an application of Theorem 
A.l in the Appendix. • 

Theorems 2.1 can be generalized by the following 
theorem. 

Theorem 2.2: Denote by Coo (lR) the space of continuous 
functions on lR vanishing at 00. Then, for all FEC 00 (lR), 

Proof: This follows from Theorem 2.1 and an applica-
tion of Theorem A.1 in the Appendix. • 

We next consider the asymptotic behavior of the ground 
state energy EK • Concerning this problem, we have been able 
to obtain a result only in the case where C" and C are bound­
ed. Let 

Hoo (K) =A®I+ (/®PO)CK(/®PO) (2.16) 

and 

(2.17) 

Lemma 2.3: Let C" and C be bounded. Then, for all 
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IEoo - Eoo (K) I<IICK - C II· 

In particular, if II C" - C 11-0 as K -+ 00, then 

lim Eoo (K) = Eoo' 

Proof: For IIIED(A ® Po) with 1111111 = 1, we have 

1(1II,Hoo (K)III) - (III,Hoo III)I<IIC" - CII, 

(2.18) 

which, combined with the variational principle, gives 
(2.18). • 

An estimate of the ground state energy E" is given by the 
following theorem. 

Theorem 2.4: Let CK and C be bounded. Suppose that 
B ~ (KerB)l';;;.b with some constant b>O. Then, for all 
K>(Eoo (K) + IIC"II)!b, 

Eoo (K) -IIC"II17K(1 + ~1 + 17~) -1<E,,<E oo (K), 
(2.19) 

where 

17K =21IC"II/[bK- E oo (K) -IIC"II]· 

In particular, if liCK - C 11-0 as K-+ 00, then, 

lim EK =Eoo' 

Proof: We have 

fF = fFI $ fF2' 

where 

fFI = fft" ® Ker B, fF 2 = fft" ® (Ker B)l. 

(2,20) 

Let Pj (j = 1, 2) be the orthogonal projection from fF onto 
fFj' It is easy to see that 

PI =I®Po, P2 =I®(/-Po)' 

We can write 

H" =Hoo (K) + KI®B(/ - Po) 

+ PI C"P2 + P2 CKPI + P2 CK P2 • 

For all IIIEfFI nDA,B with 1111111 = 1, we have 

(III,H" III) = (III,Hoo (K)III). 

Hence, it follows from the variational principle that 

E,,«III,H 00 (K) III), 

which implies the second inequality of (2.19), [Note that 
DA.B is a core ofHoo (K).] 

To prove the first inequality of (2.19), we write IIIEDA •B 

with 1\11111 = 1 as 

111=111) +1112' 

with IIIjEfFj (j = 1,2). Then, using the Schwarz inequality 
and the fact that A is non-negative andB ~ (Ker B)l';;;.b>O, 
we have 

(III,HK 1II)';;;.Eoo (K) 11111) W + (bK - IIC" IDI\'l121\2 

-2I1 CKIIII III IIIII'l1211· 

Since 
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it follows that 

EK>E", (K) - sup A(X), 
O<x<1 

where 

A(X) = (bK-E", (K) -IICKII)x2+2I1CKllx~l-x2 

- (bK -IICKII- E", (K». 

It is easy to show that the inequality 

ax2 + /3x~1 - X2 - a<!( - a + ~a2 + /3 2
) 

holds for all a > 0, /3>0 and O<x< 1. Applying this inequali­
ty with a=bK-E", (K) -IICKII>O and /3=2I1CK II, we 
obtain the first inequality of (2.19). Formula (2.20) follows 
from (2.19), Lemma 2.3, and the fact that 7JK-+O 
(K-+ (0). • 

Remark' As the above proof shows, the second inequali­
ty of (2.19) holds also for the case where CK and C are not 
bounded. 

In order to write H", in a more explicit way, we intro­
duce a concept of "partial expectation" for linear operators. 
For SEB( Sf?) (the space of all bounded linear operators on 
Sf?) and f ,gE%, we define the sesquilinear form qf,g ( . , . ) on 
~X~by 

qf,g (u,v) = (u ®f,S(v®g»!l'" u,~, 

which is bounded with 

Iqf,g(u,v)I<IISlIlIfllllgllllullllvll· 

Therefore, by the Riesz lemma, there exists a unique 
Ef,g (S)EB(~) such that 

(u®f,S(v®g»!l" = (u,Ef,g(S)V)K 

and 

IIEf,g (S) II < II fllllgllliS II· 

We also define Et<S)EB(~) by 

Ef(S) = Ej,f(S), 

Wecal1the operator Ef,g (S) [resp. Ef(S)] the partial expec­
tation of Swith respect to {f,g} (resp.j). Note that, in the 
caseS=L®MwithLEB(~) andMEB(%), we have 

EJ.g(L®M) = (f,Mg)KL. 

Some elementary facts of Ef,g (S) are summarized in the fol­
lowing proposition, whose proof is left to the reader. 

Proposition 2.5: (i) For all f,g,hE%, a,/3Ee, and 
SEB(Sf?), 

Eh.af+pg(S) = aEhJ(S) + /3Eh.g(S). 

(ii) For allf,gE%, a,/3Ee, and S,TEB( Sf?), 

Ef,g (as + /3n = aEf,g (S) + /3Ef,g (n. 
(iii) For allf,gE% and SEB( Sf?), 

Ef,g(S)* = EgJ(S*). 

The following continuity properties of the map 
:S -+ EJ.g (S) can also be easily proved. 

Proposition 2.6: Let S,SnEB( Sf?), n> 1, and f,gE%. 
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Then: 
(i) If Sn -+S(n-+ (0) in operator norm, then 

Ef,g (Sn) -+Ef,g (S)(n -+ 00 ) in operator norm. 
(ii) If Sn -+S(n-+ (0) strongly, then Ef,g (Sn) 

-+Ef,g (S)(n-+ (0) strongly. 
(iii) If Sn -+S(n -+ 00 ) weakly, then Ef,g (Sn) 

-+Ef,g(S)(n-+ (0) weakly. 
Lemma 2. 7: Let PEB( %) be an orthogonal projection 

with dim Ran P= n < 00. Let {.Ij}j= 1 be an orthonormal 
basis of Ran P. Then, for all SEB( Sf?), 

n 

(l®P)S(l®P) = L EIpI.(S) ®Pkj' 
j,k= 1 

where PkjEB(%) is defined by 

Pkj"= (fk/)K.Ij· 

(2.21) 

(2.22) 

In particular, if n = 1 and Ran P = {ala laEe} with 
lifo II = 1, then 

(l ® P)S(l ® P) = Efo (S) ® P. 

Proof' Let u,~ andf,gE%. Then we have 

(u ®f,(l ®P)S(l ®P)v®gtcr 
n 

= L (fJ;)K(fk,g)K(U®.Ij,S(v®fk»!l" 
j,k= 1 

n 

= L (f,Pkjg) K(u,EIpI. (S)V)K 
j,k= 1 

=(u®f,{.± Elplk(S)®Pkj}v®g) . 
j,k= 1 !l" 

(2.23) 

Thus (2.21) follows. • 
We next define the partial expectation for unbounded 

operators. For this purpose, we introduce a class of linear 
operators in Sf? 

Definition 2.8: We say that a densely defined linear oper­
ator S in Sf? is in E ( Sf?) if and only if there exist subspaces 
Dy(S) andDK (S) densein~ and %, respectively, such 
that 

DK(S) ;DK(S)CD(S), 
A 

where ® denotes algebraic tensor product. 
Let SElE ( Sf?). Then, for all fE%, gED K (S), and 

VEDy (S), the conjugate linear functional 

L(u) = (u ®f,S(v®g»x, u~, 

on ~ is bounded with 

IL(u)I<llfIIIlS(v®g)lllIull· 

Therefore, by the Riesz lemma, there exists a unique vector 
EJ.g (S)~ such that 

L(u) = (u,Ef,g(S)v)y 

and 

IIEf,g(S)vll<lIfIlIlS(v®g)lI· 

The map :v-+Ef,g (S)~ is linear. Hence, Ef,g (S) gives a 
densely defined linear operator in ~ with 
D(Ef,g(S» = DK(S). We remark thatEf,g (S) may depend 
on the choice of the pair of the subspaces DK(S) and 
D K (S). A criterion for the closability of Ef,g (S) is given by 
the following proposition. 

Proposition 2.9: Let SEE(Sf?). Suppose that S* is in 
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E(2"). Then, for alljEDy (S*),geDy (S), Ef,g(S) is clo­
sable and 

Eg,f(S*) CEf,g (S)*. 

Proof It is straightforward to see that for all 
uED,K'(S*), VEiJ,K'(S),JEDy (S*), andgeD.~ (S), 

(u,Ef,g(S)v)y = (Eg,f(S*)u,v),K', 

which implies the desired result. • 
Lemma 2.7 is translated into the present case as follows. 
Lemma 2.10: Let P and {.Ij}J= I be as in Lemma 2.7. 

Suppose that SEE( 2") with Ran PCD.~ (S). Then, the 
same conclusion as in Lemma 2.7 holds for S. 

The above lemma and (2.10) immediately give the fol­
lowing result. 

Proposition 2.11: Suppose that dim Ker B = n < 00 and 
Cis in E(2") with Dy (C) ::JKer B. Let {Jj}J= I be an or­
thonormal basis of Ker B. Then, 

n 

H"" =A ®I + L Efpfk (C) ® (Po hj' 
j.k= I 

In particular, ifKer B = {alo laEC} with 1110 11= 1, then 

H"" =Heff®PO +A®(l-Po), 

where 

Heff = A + Efo (C). (2.24) 

The following fact easily follows from Theorems 2.1, 
2.2, and (2.24). 

Theorem 2.12: Let C be as in Proposition 2.11 and 
Ker B = {alo laEC} with 1110 II = 1. Then: (i) Let ZEC be as 
in Theorem 2.1. Then 

s-lim (HK - z) -I = (Heff - z) -I ®Po' 

(ii) For all FEC"" (R), 

s-lim F(HK) =F(Heff ) ®Po' 

Under the assumption of Theorem 2.12, the self-adjoint 
operator Heff may be regarded as an "effective" operator, in 
the asymptotic region K::::: 00, of H K restricted to the subspace 
K®KerB. 

We next consider the relation between the spectrum of 
HK and of H eff . 

Theorem 2.13: Under the assumption of Theorem 2.12, 
we have: 

(i) Ifa,hER, a<h, and (a,b) nu(HK ) = 0 for all large 
K, then (a,b) nu(Heff ) = o. 

(ii) Let {E A (H K ) } and {E A (Heff ) } be the spectral fam­
ily of HK and of H eff , respectively. Let a,hER, a < b, and 
a,bff.Upp (Heff ), whereupp (Heff ) denotes the pure point spec­
trum of H eff . Then, 

s-lim E(a.b) (HK) = E(a.b) (Heff ) ® Po· 

Proof: This follows from Theorem 2.12 and an applica-
tion of Theorem A.2 in the Appendix. • 

Let A I be a symmetric operator in K such that A + A I 
has a discrete spectrum. We may write HK as 

HK = Ho,K +H/(K), 
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where 

Ho,K = (A + A I ) ® I + KI ® B 

and 

HI(K) = CK -AI ®l. 

If the spectrum of B is of the form [0,00 ), then all the eigen­
values of Ho,K are embedded in the continuous spectrum of 
li. and hence H gt'ves an example for perturbation prob-O,K K 

lem of embedded eigenvalues. In general, embedded eigen­
values may be unstable under perturbations, i.e., they may 
disappear under perturbations (e.g., Refs. 6, 9, and 22); HK 
may have no eigenvalues more than the ground state energy. 
On the other hand, the effective operator Heff may be regard­
ed as the unperturbed operator of H K in the sense of Theorem 
2.12 and its eigenvalues may be discrete (see Secs. III and 
IV). It is well known that one of the concepts to handle such 
a situation in perturbation problems is spectral concentration 
(e.g., Chap. VIII, Sec. 5 in Ref. 20 and Sec. XII.5 in Ref. 22). 
We recall the following definition. 

Definition: Let Tn be a family of self-adjoint operators 
and E A ( Tn ) be the spectral family of Tn. Let {An}: = I and 
A be subsets ofR. We say that the part o/the spectrum o/Tn 
in A is asymptotically concentrated on An as n -+ 00 if and 
only if 

s-lim EAnAc (Tn) = 0, 
n- 00 " 

where A~ = R - An. 
Theorem 2.14: Let C and Ker B be as in Theorem 2.12. 

Let R > 0 and A be the union of a finite number of mutually 
disjoint, bounded open intervals of R such that 
[ - R,R ] nu(Heff ) CA. Then, the part of the spectrum of 
HK in [- R,R] is asymptotically concentrated on A as 
K-+ 00. 

Proof We write 

A = Uj= I (aj,bj ). 

It suffices to consider the case where 
a l < - R <bl <a2 <b2 '" <an <R <bn. Then we have 

AC(R) == [ - R,R ] nAC = Uj':ll [bj,aj+ I]' 

For allj = 1, ... ,n - 1, the interval [hj,aj + I ] is included in 
the resolvent set p(Heff ). Hence, for each j - 1, ... ,n - 1, 
there exist constants a; and b; such that 

[bj,aj + I] C (b ;,a;+ I) C~,<Heff) and b ;,a;+ I ff.u(Heff )· 
Hence, by Theorem 2.13 (11), we have 

E .. (HK)-+E(b" ) (Heff ) ®Po =0, (bl'aJ+I) l'aJ+1 

strongly as K-+ 00. Since 

AC(R) C Uj,:/(b ;,a;+ I) 

and hence 
n-\ 

EAc(R) (HK)<. L E(b'a' ) (HK), 
j= 1 l' J+ t 

we obtain 

E AC(R) (HK ) -+0, 

strongly as K-+ 00. Thus the desired result follows. • 
Remark: The above result is weaker than the standard 

result on spectral concentration (e.g., Chap. VIII, Sec. 5, 
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Theorem 5.1 in Ref. 20). This is due to the fact that the 
strong resolvent convergence of HK is different from the usu­
al strong resolvent convergence where the limiting operator 
is also a resolvent. Theorem 2.14 may be interpreted as a 
local spectral concentration of HK on the spectrum of H eff • 

III. THE PAULI-FIERZ MODEL 

In this section we apply the abstract theory in the last 
section to the Pauli-Fierz model to study its nonrelativistic 
limit. 

A. Definition of the model and some fundamental facts 

The model describes a quantum system of a one-electron 
atom coupled to a quantized radiation field 1-4 (cf. also Refs. 
5-9). For a mathematical generality, we assume that the 
one-electron atom is placed in the d-dimensional space Rd 
(d>2). We shall denote by fz (resp. m, c) the Planck con­
stant divided by 21T (resp. the electronic mass, the speed of 
light), regarding them as positive parameters. In what fol­
lows, the differential operators a /axj , j = 1, ... , d, 
x = (XI ,,,,,Xd )ERd, are taken in the generalized sense. We 
set 

p = ( - ifz ~ , ... , - ifz~) . 
aXI aXd 

(3.1 ) 

We take the potential V(x) of the atom to be a real-valued 
measurable function on Rd which satisfies: 

(V-I) D(p2) CD( V) and for all A > 0, V(p2 + A) - I is 
bounded with 

lim II V(p2 + A) -III = o. 
A_ 00 

(V-2) For all t> 0 and xERd, 

r e-tIX-YI2!V(y)ldy< 00. 

JRd 
Condition (V -1) implies that V is infinitesimally small 

with respect to p2 and hence the Hamiltonian of the atom 

HA = (l/2m)p2 + V (3.2) 

is self-adjoint on D(p2) and bounded from below. 
Remark: If V is a Phillips perturbation of p2, then V 

satisfies (V -1) (see Refs. 23 and 24). It was proved in Ref. 23 
that if 

VEL q(Rd) + L 00 (Rd ), 

withq> d /2 and q>2, then Vis a Phillips perturbation ofp2. 
In particular, it follows that the Coulomb potential in the 
case d = 3 satisfies (V-l) and (V-2). 

We use the Coulomb gauge in quantizing the radiation 
field. The Hilbert space of state vectors for the quantized 
radiation field is then defined by the boson Fock space: 

Y EM = EB:=o®~W 

over the Hilbert space 

W=L 2 (Rd
) EB'" EBL 2(Rd

), , ) -d-l times 

(3.3 ) 

(3.4) 

where ® ~ W denotes the n-fold symmetric tensor product of 
Wwithconvention ®;=oW=C. We denote by a(F), FEW, 
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the annihilation operator in Y EM' For r = 1, ... , d - 1 and 
fEL 2(JRd), we define frEW by /,. = (0, ... /, ... ,0) (the rth 
component is equal to f and the other components are zero). 
The map if-a ( /,.) defines an operator-valued distribution 
on JRd. We denote the distribution kernel by a r (k), r = 1, ... , 
d - 1, kERd. Then the following canonical commutation re­
lations hold in the sense of operator-valued distribution: 

[ar(k),aq(k')] = [ar(k)*,aq(k')*] =0, 

[ar(k),aq(k')*] ={)rq{)(k-k'), r,q= 1, ... ,d-1. 

Let er (k) be an JRd-valued measurable function on Rd such 
that 

k'er (k) = 0, er (k) 'eq (k) = {)rq, 

a.e.kERd, r,q = 1, ... ,d - 1. 

The vectors er (k), r = 1, ... ,d - 1, serve as polarization vec-
tors of "photon." 

The free Hamiltonian of the quantized radiation field is 
defined by 

d-If 
HF=fzc r~1 dk(J)(k)ar(k)*ar(k). (3.5) 

Here, (J)(k) is a non-negative measurable function on ad 
with (J)EL ~oc (Rd) which depends only on Ik I. The physical 
choice for (J)(k) is given by (J)(k) = Ik I. 

The Hilbert space Y of state vectors for the interacting 
system of the atom and the radiation field is taken to be the 
tensor product of L 2(Rd) and Y EM: 

Y =L 2(Rd
) ®YEM' (3.6) 

To define the interaction between the atom and the radiation 
field as an operator in Y, we have to introduce a cutoff for 
photon momenta: Letp(x) be a real distribution on JRd such 
that its Fourier transform 

p(k)= 1 fdXp(X)e-ikx 
(21T)d/2 

(3.7) 

is a measurable function and depends only on Ik I with 

f
dk I,O(k) 12 < 00, fdk Ip(k)1

2 
< 00. (3.8) 

(J)(k)3 (J)(k) 

Then we define the time-zero radiation field with cutoff p by 

d-I f Jk 
A (x;p) = L dk er(k) 

r= I ~2(J)(k) 

X {jJ(k)*ar (k)*e- ikx + p(k)ar (k)eikx}. 
(3.9) 

The total Hamiltonian of the coupled system of the 
atom and the radiation field with the full minimal interac­
tion reads: 

(3.10) 

where eER'\ {O} is a coupling parameter denoting the ele­
mentary charge. In the present paper, however, we take as 
the total Hamiltonian of the coupled system a version of H 
simplified in the following way: (i) We use the dipole ap­
proximation, i.e., we replace A (x;p) by A (O;p); (ii) We ne­
glect the term A (x;p )2. 

Further, we take the mass renormalization of the elec­
tron into account, i.e., we introduce the "bare mass" mo of 
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the electron by 

_1_=~+ (d -1) (...!!...-)2 f dk Ip(k)iZ , 
mo m d me W(k)2 

(3.11 ) 

and define the "renormalized" atom Hamiltonian H ':' by 

H";n = ( 1I2mo)p2 + V. (3.12) 

Thus the total Hamiltonian of our model is defined by 

H(e,e) = H";n®I + I®HF + HI' 

where 

HI = - (elme)p®A(O;p). 

For K> 0, we introduce 

e(K) = Ke, e(K) = ,r/2e, 

(3.13 ) 

which are regarded as a scaled speed of light and a scaled 
elementary charge, respectively. Then we define the scaled 
Hamiltonian H(K) by 

H(K) =H(c(K),e(K» 

= ( __ I_p2 + v) ®I + KI®HF + KHI, 
2m(K) 

where m(K) is defined by 

_1_ = J.-. + K (d - 1) (...!!...-)2 f dk Ip(k) 12 
m(K) m d me w(k)2 

(3.14 ) 

We want to consider the scaling limit K ..... 00 of the model 
in terms of H(K). Obviously e(K),le(K) I ..... 00 as K ..... 00. In 
this sense, the scaling limit K ..... 00 inH(K) corresponds to the 
nonrelativistic limit at the same time as the magnitude of the 
coupling charge becomes infinite. Note also that the "scaled 
bare mass" m(K) -0 as K-+ 00. 

Before stating the main results on the scaling limit, we 
give some known facts. We denote by 0 the Fock vacuum in 
Y EM : 

0= {1,0,0, ... }. (3.15) 

Let Y EM,O be the dense subspace in Y EM spanned by vec­
tors of the form 

a(FI )*"'a(Fn)*O, 0, FjEW, j= 1, ... ,n, n>l 

and 

(3.16 ) 

where Y (lRd
) is the Schwartz test function space of rapidly 

decreasing COO-functions on Rd and COO (JRd) denotes the 
space of COO-functions on JRd with compact support. Then 
the subspace 

Yo = Yo (JRd) ®YEM,O 

is dense in Y. 
Let 

T = i...!!...- dil f dk 1 p 
me r= I w(k)J2Iicw(k) 

'er(k){p(k)*ar(k)* - p(k)ar(k)}. 

(3.17) 

(3.18 ) 

Then we can show that Yo is a set of analytic vectors of T 
and hence Tis essentially self-adjoint on it.s We denote the 
unique self-adjoint extension of T ~ Yo by the same symbol. 
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Let 

C( V) = eiT( V®I)e- iT. (3.19) 

Since exp( - tp2®I) commutes with eXp(Un(AER) and 
exp(iAn is unitary, it follows from (V-l) that C( V) is in­
finitesimally small with respect to p2 ® I with 

lim lie( V) (p2®I + A) - III = 0, 
A~ 00 

(3.20) 

which implies that C( V) is infinitesimally small with respect 
to (p2®I)/2m +KI®HF with 

lim IIC( V) [(l/2m)p2®I + KI®HF +A ] - III = 0 
A- 00 

uniformly in K. Therefore, the operator 

lI(K) = (1I2m)p2®I + KI®HF + C( V) 

is self-adjoint on 

Do = D(p2 ®I) nD(l®HF ) 

and bounded from below. We have 

lI(K) >inf u(HA ). 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

This follows from the non-negativity of H F and the fact that 
p2 ® I commutes with exp( ± in. 

A fundamental fact concerning our model H(K) is the 
following lemma. 

Lemma 3.1: The unitary operator eiT maps Do onto Dr; 
and for all K> 0, 

eiTH(K)e - iT = lI(K) 

on Do. In particular, H(K) is self-adjoint on Do and bounded 
from below with 

H(K»inf u(HA ). 

Proof: See Ref. 5 (cf. also Ref. 4). 
Proposition 3.2: Let 

E(K) = inf u(H(K». 

Then, E(K) is nondecreasing in K. 

• 
(3.25 ) 

Proof: Since HF is non-negative, we have from (3.22) 

lI(K) >lI(K'), 

for all K> K' > O. By Lemma 3.1, we have 

E(K) = inf u(lI(K». 

Hence, E(K»E(K'), for K>K'>O. • 
B. Convergence of the Hamiltonian, effective potential, 
and an estimate of the ground state energy 

Lemma 3.3: The operator C( V) is in E(Y) (see 
Definition 2.8) with DL2(R d ) (C( V» = D(p2) and 
D.7EM (C( V» = D(HF ). Further, the partial expectation 
En (C( V» of C( V) with respect to 0 is given by 

En (C( V» = Veff on D(p2), (3.26) 

where Veff is the multiplication operator associaed with the 
function 

Veff(x) = (21TC(p»-dl2 f dye- 1x - Y1 '12C(P)V(y), 

(3.27) 
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with 

C(p) = (d-1) (~)2e2 Jdk Ip(k)1 2 

2d me 'i1c li)(k)3 

Proof: By Lemma 3.1 and condition (V-1), 
D(p2) ®D(HF) CDo cD(C( V». Hence, C( V) is in lE(Y). 
To prove (3.26), we first consider the case where VeY(Rd ). 

Then it follows that for allf,geL 2(Rd), 

(f,En(C( V»g) L2 

= 1 J ds V(s) (j® O,eisx<Dg®O)y, 
(21T)d/2 

where 

x(D =iTx®Ie- iT. (3.28 ) 

Let 

X =i~ fI 
me \J 2e 

d-I J e (k) 
X ~ , {p(k)*a,(k)* - p(k)a,(k)}. ,f'l li)(k) 3/2 

Then, it is not so difficult to see that 

eiTD(x,., ®I) = D(x,., ®I + I®X,.,), 

x(D,.,=x,.,®I+I®X,." J.L=I, ... ,d. 

Hence, we have 

(j® O,eisX(ng ® 0).7 = (f,eiSXg) L2 (0,eiSXO).7 EM' 

By the standard Fock space calculus, we find 

(O,eiSXO)y = e- lsI2c(P)/2. 
EM 

Thus (3.26) follows. 
We next consider the case where V is bounded, but, not 

in Y (Rd). In this case, we approximate V by a sequence 
{Vn}n CY(Rd

) in the sense of strong convergence in 
L 2(Rd). Then, by Proposition 2.6 (ii), we have 

En(C( Vn »-En(C( V»(n- 00) 

strongly. On the other hand, we have 

(Vn )elf (x) - Velf (x)(n- 00 ), 

for all xeRd. Thus we obtain (3.26). 
Finally, let V satisfy (V -1) and (V -2). Denoting by X n 

the characteristic function of [O,n], neN, we define 

Vn (x) = Xn (Ixl) Vex). 

Then Vn is bounded and hence (3.26) holds with V replaced 
by Vn • It is easy to see that for all \IIeDo, 

C( Vn ) \11- C( V) \II 

strongly. Hence, for alljeC 0' (Rd) and g in D(p2), 

(f,En(C( Vn »g) - (f,En(C( V»g). (3.29) 

It follows from condition (V-2) that I V I elf is a continuous 
function on Rd. Hence, by using the dominated convergence 
theorem, we have 

(f,( Vn )elfg)- (f,Velfg), 

which, combined with (3.29), gives 

(f,En(C( V»g) = (f,Velfg)· 

Thus (3.26) follows. 
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• 

By (3.26) and the fact that C( V) is infinitesimally small 
with respect to p2 ® I, it follows that Velf is infinitesimally 
small with respect to p 2/2m. Hence, 

HA,.1f = (l/2m)p2 + Velf (3.30) 

is self-adjoint on D(p2) and bounded from below. Let 

EA,.1f = inf u(HA,elf)' (3.31) 

We denote by Po the orthogonal projection from Y EM onto 
the Fock vacuum sector {aOlaeC}. 

Theorem 3.4: For all zeC with 1m z:;!:O or zeR with 
z < min{inf u(HA), inf u(HA,.1f )}, 

s-lim(H(K) - Z)-I = e-iT{(HA,elf - z) -I ®Po}eiT. 
K_ 00 

(3.32) 

Proof: By Lemma 3.1, we need only to consider the scal­
ing limit K- 00 of (lI(K) - z) - 1 • Note that lI(K) is just of 
the form of the operator HK considered in Theorem 2.1 with 
the following identifications: 

7t" = L 2(Rd
), % = Y EM' 

A = p2/2m, B = H F, C
K 

= C = C( V). (3.33) 
We have Ker HF = {aOlaeC}. Hence we obtain from 
Theorem 2.12(i) 

s-Iim(lI(K) - z) - 1 

= (p2/2m + En(C( V» - z) -I ®Po, 

which, together with (3.26), gives (3.32). • 
Remarks: (i) In the case d = 3, Velf coincides with the 

effective potential given by Welton, 3 who derived it by phys­
ical arguments to calculate some observable effects of the 
quantized radiation field such as the Lamb shift. Theorem 
3.4 shows that the effective potential can be derived as a 
scaling limit of the total Hamiltonian H(K). This does not 
only justify rigorously the effective potential but also clari­
fies a mathematical meaning of it. 

(ii) As (3.27) shows, the effective potential Velf is a 
Gaussian transformation of the original potential V. The 
functional C(p) of p, which characterizes the Gaussian 
transformation, has a mathematical meaning: let x( D be 
defined by (3.28). Then it follows from the proof of Lemma 
3.3 that 

En [(x(T) -x®1)2] = C(p)I. (3.34) 

Hence, C(p) can be identified with the partial expectation of 
the square of Ax:=x( D - x ® I with respect to the Fock 
vacuum O. In Ref. 3, Ax was regarded as a fluctuation in 
position of a free electron and C(p) was interpreted as the 
mean-square fluctuation in position of a free electron. In this 
sense, (3.34) suggests that mean fluctuations of observables 
under the action of a quantized radiation field may be formu­
lated in terms of the notion of partial expectation. 

Theorem 3.5: Suppose that V is bounded and 

inf li) (k) >li)o, (3.35 ) 
/CElRd 

with a constant li)o > O. Then, for all 
K> (EA,elf + 11V1I)/'i1cli)o, 

EA,elf -II VllvK ( 1 + ~1 + V;) -1<,E(K)<,EA,elf' 
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where 

V K =211VII/(m-WOK-EA,elf -IIVII)· 
In particular, 

lim E(K) = EA,elf' 
K_ 00 

Proof' Since V is bounded in the present case, we have 

IIC( V)II = IIVII· 
Under condition (3.35), H F ~ (Ker H F )l;;.m-WO' Hence, an 
application of Theorem 2.4 to the present case with the iden­
tifications (3.33) and b = m-wo yields the desired result. • 

C. Spectral concentration 

In the physical case w(k) = Ik I, all the eigenvalues of 
the unperturbed Hamiltonian HA ® I + KI ® H F are embed­
ded in its continuous spectrum. Hence, as already remarked 
in Sec. II, they may be unstable under the perturbation 
KH] + (the self-energy term), i.e., they may disappear un­
der the perturbation (for an example, see Ref. 6). On the 
other hand, eigenvalues of HA.elf may be discrete. The con· 
cept of spectral concentration may be helpful to handle such 
a situation in perturbation problems. We have the following 
result on the spectral concentration of H(K). 

Theorem 3.6: Let R > 0 and A be the union of a finite 
number of mutually disjoint, bounded open intervals of R 
such that [ - R,R ] nO'(HA,elf) CA. Then, the part of the 
spectrum of H(K) in [ - R,R] is asymptotically concentrat­
edon A aSK ..... 00. 

Proof: Let E;.(H(K» be the spectral family of H(K). 
Then, by Lemma 3.1, 

exp(iT)E,;. (H(K) )exp( - iT) =:E,;. (lI(K» 

is the spectral family of lI(K) By Theorems 3.4 and 2.14, we 
have 

EAC(R) (lI(K» ..... o 
strongly as K ..... 00. Hence, 

EAC(R) (H(K» ..... O 

strongly as K ..... 00. 

IV. THE SPIN-BOSON MODEL 

• 
The spin-boson model we are going to discuss describes 

a two-level atom coupled to a quantized Bose field (a simpli­
fied version ofa quantized radiation field) (e.g., Ref. 13 for a 
review and Refs. 10-12, 14, and 15 for some rigorous re­
suits). We denote by fl > 0 the half of the gap of the two 
energy levels of the unperturbed atom. The total Hamilto­
nian of the model is given as follows: 

H =H(e,A) 

= I ® Hb + flO', ® I + 0'3 

® J dk{A(k)*a(k)* + A(k)a(k)} - Eo (e,A). 

(4.1 ) 

Here, the Hilbert space in which H acts is 

Y = C2 ® Y B(L 2(Rd » = Y B(L 2(Rd » $ Y B(L 2(Rd », 
(4.2) 
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where Y B(L 2(Rd» denotes the boson Fock space over 
L 2 (Rd )(d;;'1). The 2X2 matrices 0', and 0'3 are the stan­
dard Pauli matrices and a(k) is the operator-valued distri­
bution kernel of the boson annihilation operator acting in 
Y B(L 2(Rd ». The operator Hb is the free boson Hamilto­
nian: 

Hb = e J dk w(k)a(k)*a(k), (4.3) 

where w(k) is a non-negative measurable function on Rd 
with weL foe (Rd

). We assume that A(k) is a measurable 
function on Rd satisfying the following conditions: 

J
dk IA(kW< 00, Jdk IA(k)1

2 

< 00. (4.4) 
W(k)2 

The functional Eo (e,).):). ..... C is defined by 

Eo (e,).) = - ~Jdk IA(k)1
2 

, (4.5) 
e w(k) 

which physically means the ground state energy of the bo­
sonic Hamiltonian 

Hb(e,A) =I®Hb + 0'3 

® J dk{A(k)*a(k)* +A(k)a(k)}. 

We have set Ii = 1. 
It is known (or easy to see by applying the Kato-Rellich 

theorem) that His self-adjoint with D(H) = D(l®Hb) and 
bounded from below. 

For K> 0, we set 

H(s) = H(Ke,KA), (4.6) 

which is the scaled Hamiltonian we are going to study in the 
asymptotic region K-::::; 00. The operators 

T ± = ± i ~ J dk _1_ {A(k)*a(k)* - A(k)a(k)} 
e w(k) 

(4.7) 

are self-adjoint in Y B' Hence, we can define the unitary 
operators 

U ± = eiT
± 

onYB • Set 

(4.8) 

(4.9) 

which is unitary on Y. The following fact is easily proved. 
Lemma 4.1: For all K> 0, 

lI(K) =: U -'H(K)U = KI®Hb + W, (4.10) 

where 

W=fl(U~+ U~_). (4.11 ) 

Let 

E(K) = inf a(H(K». ( 4.12) 
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Proposition 4.2: The ground state energy E(K) is nonde­
creasing in K> 0 and 

inf E(K)" - p,. 
1(>0 

Proof: By (4.10), we have 

lICK) "li(K'), 

for all K> K' > O. Since we have 

E(K) = inf a(li(K», 

(4.13) 

the nondecreasingness of E(K) follows. Note that W> - p" 

which, combined with (4.10) and the non-negativity of H b' 

gives (4.13). • 
Lemma 4.1 shows that H(K) is unitarily equivalentto an 

operator of the form of HI( discussed in Sec. II. Hence, we 
can apply the main theorems in Sec. II to the present case. 
Let us compute the partial expectation of W with respect to 
the vectors in Ker Hb first. We have Ker Hb = {aOlaEC}, 
where ° is the Fock vacuum in.Y B(L 2(Rd ». 

Lemma 4.3: Let 

F(c,A.) =exp(- ~fdk IA(k)1
2
). 

2 W(k)2 
(4.14 ) 

Then, 

Proof: By computing the inner product 
(u ® 0, W(v ® 0» for 

U = (ZI ,Z2 ),v = (WI 'W2 ) EC2
, 

we see that 

( 
0 (0,U

0

2
- 0») . 

En(W)=P, (0,U 2+O) 

It is straightforward to show that 

(0,U 2
± 0) = F(c,A.). 

Thus (4.15) follows. 
Theorem 4.4: For all ZEC,\ [ - p" 00 ), 

• 
s-lim(H(K) - Z)-I = U(p.F(C,A.)CTI - Z)-I ®Po U -I. 

"-co 
( 4.16) 

Proof: We need only to use (4.10) and apply Theorem 
2.12 with the following identifications: 

Jf'=C2
, %=.YB (L 2(Rd », 

A=O, B=Hb , C,,=C=W, (4.17) 

[Note thatp,F(c,A.)CTI " - p,F(C,A)> - p,.] • 
The estimate (4.13) ofthe ground state energy E(K) is 

improved as follows. 
Theorem 4.5: Suppose that w(k) satisfies (3.35). Then, 

for all K>p,(l - F(c,A.»/cwo, we have 

- p,F(C,A) - p,d" (1 + ~ 1 + d; ) - I<E(K) < - p,F(C,A) , 
( 4.18) 

where 

dl( = 2p,/ [CWoK - p,{1 - F(C,A»]. 

Proof: Under condition (3.35), Hb t (Ker Hb ).l"cwo· 
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Further, we have 

IIWII =p" infCT(p.F(c,A.)CTI ) = -p,F(c,A.). 

Hence, applying Theorem 2.4 with the identifications 
(4.17), we obtain (4.18). • 

Remarks: (i) The ground state ofthe model H(K) with 
p, = 0 is twofold degenerate. We note that F( c,A.) 2 is equal to 
the transition probability between the two ground states at 
zero temperature and in the case K = 1 (cf. Ref. 11). 

(ii) Inequality (4.18) gives a nonperturbative estimate 
of the ground state energy of H(K) with respect to both pa­
rameters p, and A and slightly improves the estimate given by 
Davies. to 

As for the spectral concentration of H(K), we have the 
following result. 

Theorem 4.6: Let R > 0 and E> O. Then, the part of the 
spectrum of H(K) in [ - R,R] is asymptotically concentrat­
edon 

(- p,F(C,A) - E, - p,F(c,A.) + E) 

U(p.F(c,A.) - E,p,F(c,A.) + E) 

aSK-+oo. 

Proof: We first note that the spectrum of the effective 
operator p,F(C,A.)CTI is equal to {± p,F(c,A.)}. Then, in the 
same way as in the proof of Theorem 3.6, we obtain the 
desired result. • 

v. CONCLUDING REMARKS 

In this paper we have developed an abstract asymptotic 
theory of a family of self-adjoint operators, which allows us 
to study in a unified way the nonrelativistic limit of the 
Pauli-Fierz and a spin-boson model. We have obtained some 
new rigorous results for the models, including an asymptotic 
estimate of their ground state energy and the existence of 
"local" spectral concentration. 

Our method can be applied to other quantum field mod­
els whose Hamiltonians can be transformed by unitary 
transformations ("dressing transformations") to operators 
of the form of HI( discussed in Sec. II. 

In the present paper we have considered only the case 
where the quantum system under consideration is at zero 
temperature. In the case of finite temperature, we have to 
reformulate the asymptotic theory in Sec. II in terms of cor­
relation functions of a KMS state associated with HI(' 

The following topics may be worth being studied as a 
continuation of the present work. 

(i) Extension of the abstract theory in Sec. II to the case 
where the operator CI( is more singular and/or the scaling 
order of CI( in K is different. 

(ii) The nonrelativistic limit of the Pauli-Fierz model 
(3.13) without the dipole approximation. In this case, a for­
mal perturbation calculation suggests that we should have 
an effective potential different from Vetr given by (3.27) (cf. 
Ref. 3). 

(iii) The nonrelativistic limit of the model whose Ham­
iltonian is given by (3.10). In the case ofthe dipole approxi­
mation, we may use the results in Ref. 7. 
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APPENDIX: SOME LIMIT THEOREMS 

In Sec. II we encounter a strong convergence of resol­
vent that is different from the usual strong resolvent conver­
gence in that the limiting operator is not the resolvent of an 
operator. In this Appendix we present some limit theorems 
related to such a strong resolvent convergence, which are 
variants of the standard limit theorems of the usual strong 
resolvent convergence (e.g., Refs. 20 and 21). We first con­
sider a general case. 

Theorem A.I: Let Tn' nEN, and Tbe self-adjoint opera­
tors in a Hilbert space K, and Q be an orthogonal projection 
on K. Suppose that Q commutes with the resolvent of T and 
for all ZEC \ JR, 

s-lim(Tn -z) -I = (T-z)-IQ. (Al) 
$- co 

Then, for all FECco (JR) (the space of continuous functions 
on JR vanishing at (0), F( T) commutes with Q and 

s-lim F( Tn) = F( T)Q. (A2) 
n_ co 

Further, if Tn is bounded from below uniformly in n, then T 
is bounded from below and 

(A3) 
n- co 

where 

En = inf u(Tn), E = inf u(T ~ Ran Q). 

Remark: The commutativity of the resolvent of T with 
Q implies that T is reduced by Ran Q, so that T ~ Ran Q is 
also self-adjoint. 

Proof: The proof of (A2) can be done in the same way as 
in the proof of Theorem VIII.20(a) in Ref. 21. The point 
that we are careful about in the present case is that the limit­
ing operator (T - z) - IQ is not a resolvent. We can show 
that for all polynomials P = P(x,y) in two variables x, y: 

P( (Tn + i) - I, (Tn - i) - I) --+ p( ( T + i) - 1, ( T - i) - I)Q 

strongly as n --+ 00, where we have used the assumption that 
Q is an orthogonal projection commuting with the resolvent 
of T. We then see that (A2) follows from a slight modifica­
tion of the proof of Theorem VII1.20(a) in Ref. 21. 

If Tn is bounded from below uniformly in n, then a stan­
dard method shows that Tis bounded from below and (AI) 
holds for Z<Zo =min{infn En,E}. We fix a real number 
A < Zo' Then, a standard formula on the strong convergence 
of bounded linear operators gives 

II(T-A) -IQII< lim II(Tn -A) -III. 
n_ co 

Note that 

II (T - A) - IQ II = II (T ~ Ran Q - A) - III. 

Thus (A3) follows. • 
We next consider operators in the Hilbert space fr giv­

en by (2.1). 
Theorem A.2: Let Tn' nEN, be self-adjoint operators in 

fr and S be a self-adjoint operator in K. Suppose that for 
all ZEC\JR, 

s-lim (Tn - z) - I = (S _ z) - I ® P 
n- co 
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with an orthogonal projection P on %. Denote by EA (Tn) 
and EA (S) the spectral family of Tn and S, respectively. 
Then: (i) If a,hER, a < b, and (a,b) n u( Tn ) = 0 for all n, 
then (a,b) nu(S) = O. (ii) If a,hER, a < b, and a,lx;upp (S) 
(the pure point spectrum of S), then 
E(a,b) (Tn) --+E(a,b) (S) ® P strongly as n --+ 00. 

Proof: The proof of part (i) is similar to that of Theorem 
VIII.24(a) in Ref. 21; we need only to note that 

II(S-z) -III = II(S-z) -I®PII· 

To prove part (ii), we note that Theorem A.1 applied to 
the present case gives 

F( Tn) --+F(S) ® P 

strongly for all FEC co (JR). Then the method of the proof of 
Theorem VIII.24(b) in Ref. 21 works and the desired result 
follows. • 

Remark: Under the assumption of Theorem A.2 and the 
condition that P :j:./, {u( Tn)} nEN cannot be bounded in n. 
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The phase-space approach to quantization of systems whose symmetry group is compact and 
semisimple is developed from two basic principles: covariance and traciality. This generalizes 
results and methods already implemented for spin systems [J. C. Vanlly and J. M. Gracia­
Bondia, Ann. Phys. 190, 107 (1989)]. The twisted product of phase-space functions is shown 
to be the image of group convolution in the context of a novel Fourier theory on the coadjoint 
orbits. 

I. INTRODUCTION 

The abstract nature of the expansions of functions on 
compact Lie groups in terms of equivalence classes of uni­
tary representations has been the source of some dissatisfac­
tion. I

-
3 One of the purposes of this paper is to reformulate 

the harmonic analysis on compact groups so that it closely 
parallels standard Fourier analysis on commutative Lie 
groups. Interestingly enough, this arose from a program of 
research on the phase-space formulation of quantum me­
chanics. 

The phase-space approach to quantum mechanics start­
ed from Moyal's observation4 that the mapping from den­
sity matrices to Wigner functions5 of the phase-space vari­
ables served to invert the Weyl correspondence6 between 
phase-space functions and operators on Hilbert space. The 
subject was appreciably generalized and revived a decade 
ago in the "deformation" paradigm of Bayen et al., 7 who, in 
fact, proposed to develop quantum theory directly from 
phase-space functions composed via the twisted or "star" 
product, by-passing any reference to Hilbert-space opera­
tors. In "deformation quantization," the systems under 
study always possess an intrinsic group of symmetries. It 
turns out that, even allowing only for quantizations compati­
ble with the action of that group, in most cases a large variety 
of "star-products" appear; in C *-algebraic versions of de­
formation theory, this nonuniqueness remains, as has been 
shown recently by Rieffel. 8 

It would seem that a supplementary condition is needed 
in order to select a (preferably unique) star-product ensur­
ing the physical equivalence of the quantization with the 
ordinary brand of quantum mechanics, obtaining thus a true 
generalization of the formalism that Moyal originally devel­
oped for nonrelativistic spinless particles. Recently, two of 
us have indeed shown how this can be done, for the physical­
ly relevant cases of pure-spin systems,9 Galilean particles of 
arbitrary spin,1O and (together with Carinena) relativistic 
theories also. II 

In all systems so far considered, the phase space is a 
coadjoint orbit of a symmetry group, the relevant objects on 
this phase space transform covariantly under the group ac­
tion and satisfy a tradal property that allows one to compute 
expected values of observables as integrals over the orbit. 
This tracial property not only allows physical interpretation 

of the phase-space functions, but also provides a rule to sin­
gle out the "correct" symbol calculus from among the many 
that could be proposed. Just as in ordinary Moyal theory, a 
quantizer or operator kernel is found that implements the 
transfer between phase-space functions and operators in a 
two-way fashion. 

In the aforementioned particular cases, direct methods 
sufficed; here, however, we seek a general prescription. This 
article shows that the Moyal quantization exists and is essen­
tially unique for all elementary systems governed by com­
pact connected semisimple Lie groups. As a first by-product 
of the construction, we obtain the twisted product of func­
tions on coadjoint orbits, which allows the development of 
an autonomous phase-space theory. A second important by­
product is the novel Fourier analysis theory alluded to at the 
beginning of this introduction. 

The organization of the paper is as follows. In Sec. II we 
identify the coadjoint orbits and review the construction of 
coherent states for compact simply connected Lie groups. 
This technical prelude serves mainly to fix the notation. The 
only result of note here is a theorem of Wildberger3 that 
establishes the faithfulness of the Berezin "covariant sym­
bol" calculus l2 in the compact case. 

In Sec. III we construct the Stratonovich-Weyl quan­
tizer, which implements the correspondence between func­
tions on the coadjoint orbits and operators on the representa­
tion spaces of the group. We show how it may be explicitly 
computed in terms of a set of special functions on the coad­
joint orbits generalizing the usual spherical harmonics. As a 
side-effect, we obtain the explicit form of the Berezin "con­
travariant symbols" for any compact simply connected 
group. 

In Sec. IV we write down the twisted product of func­
tions on coadjoint orbits. We redefine the Fourier transfor­
mation for a compact simply connected group as a transfor­
mation between function spaces by means of a scalar 
"Fourier kernel" which, in fact, arises from the Stratono­
vich-Weyl quantizer and is the exact analog of the e~ponen­
tials for commutative Fourier analysis. The dual G of the 
group G under consideration is exhibited as a G-manifold 
with a countably infinite set of connected components, car­
rying a naturally defined measure m so that the Fourier 
transformation is an isometry of L 2(G) into L 2(f;,dm). 
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The tracial property of the Stratonovich-Weyl symbols is 
what makes the Fourier theory work. The twisted product is 
then shown to be the Fourier image of the group convolu­
tion. 

II. COADJOINT ORBITS AND COHERENT STATES 

The Lie groups G we initially consider will be compact 
and simply connected, therefore semisimple. An elementary 
classical system is a symplectic manifold that is homoge­
neous for a symplectic action of G. Such manifolds are iso­
morphic to coadjoint orbits of G (these are simply connect­
ed). The first task is then to identify the coadjoint orbits of G, 
which are the phase spaces of our theory. 

We use the following notation: g denotes the Lie algebra 
of the Lie group G and g* its dual vector space. The coadjoint 
action Ut--+g'U of G on g* is defined by 

(g·u,x): = (u,Ad(g-I)X) (gEG,xEg), 

where Ad denotes the adjoint action of G on g. We write tJ u 

for the coadjoint orbit of uEg*. The isotropy subgroup of U is 
denoted G u; its tangent space is the Lie subalgebra gu of g. 

Now 

gu = {XEg:(U,[X,Y» =0, forall YEg}. 

Since tJ u;::::,G IGu, we have that the tangent space 
Tu(tJu)~g/gu and (X,y)t--+(u,[X,YJ) induces a nonde­
generate alternating bilinear form on gl gu which gives rise to 
a G invariant symplectic two-form UJ u on tJ u .13 The exterior 
product of !(dim tJ u) copies of UJ u gives a G invariant vol­
ume form mu (Liouville measure) on tJ u' 

The coadjoint orbits may be explicitly determined by the 
following argument. Let ad be the differential of Ad. Since G 
is semisimple, the negative Killing form (X, Y) K 

: = - Tr[ad(X)ad( Y)] is definite and allows us to identify 
g* with g; let UEg correspond to uEg*. Then 

(u,[X,Y» = (U,[X,Y]h = ([U,x],Y)K 

and so gu = {XEg:ad(X) U = O}. Thus 

Gu = {gEG:Ad(g) U = U} 

= {gEG:g exp(tU)g - I = exp(tU), for all tER} 

= ZG(TI ), 

where ZG (TI ) is the centralizer of the torus TI which is the 
closure of {exp(tU):tER}. Since G is a compact connected 
group, ZG (TI ) is the union of the maximal tori of G which 
contain TI.14 Choose a Weyl chamber K (and thus fix a set 
of positive roots of G) so that uEK. The torus TI is not maxi­
mal if and only if u lies in a wall of K. The generic coadjoint 
orbits thus correspond to the case uEK, are of maximal di­
mension, and form a single stratum; indeed, since all maxi­
mal tori are conjugate, the maximal-dimensional orbits are 
all ofthe form Gu ~G IT, where Tis a fixed maximal torus 
ofG. 

We say that the orbit tJ u is integral if UJ u is integral, i.e., 
has integer-valued integrals over integral two-cycles. By 
Kostant's theorem,15 this occurs when the real-linear form 
21Tiu:gu --> lR lifts to a character Xu :Gu --> U( 1) defined by 
Xu (expX): = e21/'i(u.X) for XEgu' These are the orbits that 
correspond to unitary irreducible representations of G via 
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holomorphic induction of Xu' More precisely, the complexi­
fied Lie algebra gC has a complex subalgebra .\) containing the 
complexification of gu and also the root spaces of the positive 
roots of G. If Pis the subgroup of G with Lie algebra.\) (para­
bolic subgroup), then Xu extends to a one-dimensional holo­
morphic representation of P. This gives rise to a holomor­
phic representation of the complexified group G C by 
induction of Xu; its restriction to G is a unitary irreducible 
representation P u of G. Furthermore, the Borel-Weil 
theorem l6,17 says that every unitary irrep of Gis obtained in 
this way, and that Pu and Pv are unitarily equivalent if and 
only if u and v belong to the same integral coadjoint orbit. 
Thus, if tJ u is an integral orbit, then 

tJ u;::::,G IZG(TI ) ;::::,GcIP 

is a compact Kahler manifold. 
We now fix a unitary irreducible representation p of G. 

Fix a set of positive roots for G. Let t be the Lie algebra of the 
maximal torus T and let A.Et* be the corresponding highest 
(real) weight of p (we will write PA for P whenever more 
than one unitary irrep must be considered). Since Gis semi­
simple and we have identified g* with g, we can regard t* as a 
subset of g*, so that A.Eg*. Let tJ A be the coadjoint orbit of G 
through A.. The orbit tJ A is integral since A. is an integral 
linear form on g,14 and the correspondence PAt--+tJ A is re­
ciprocal to the holomorphic-induction method of passing 
from integral coadjoint orbits to unitary irreps of G. 

Remark: It is more fashionable nowadays to associate 
P A with tJ A + {j, where {j is half the sum of the positive real 
roots; for instance, if one wishes to exploit Kirillov's charac­
ter formula. 18 (Since G is simply connected, this is again an 
integral orbit.) In this way, one avoids dealing with nongen­
eric orbits at all; but for our purposes here, the earlier corre­
spondence is perhaps more natural. 

What is needed to effect a phase-space quantization is 
the construction ofa "quantizer," which maps functions on 
the phase space tJ A to operators on the representation space 
of P A' The simplest method of proceeding to prove existence 
of the quantizer seems to be to use the coherent-state formal­
ism,3.19 which we outline as follows. 

Let VA be the representation space of P, which is a Hil­
bert space of finite dimension d A' We shall employ Dirac's 
bra-ket notation for its elements whenever convenient, and 
otherwise the inner product will be denoted by (','). Let 
IA. )E VA be a weight vector orA. of norm 1 (the choice of IA. ) 
is unique up to a phase factor). 

For any unit vector VEVA we may define <I>(V)Eg* by 

(<1>( v),x): = (1I21Ti)( v,dp(X)v); 

then the momentum mapping <I> is equivariant, i.e., 
<I>(p(g)v)=g'<I>(v); <I>(IA.» =A., and (since the weight 
space of A. is one-dimensional) 

<I> -I(A.) = {zlA. ):zEC,lzl = I}. 

Thus 

<II - I (tJ A) = {Peg) IA. ):gEG}, 

since <II(v) = g'A. iff <I>(p(g-I )v) = A. iff v = p(g)zlA. ) 
= p(g)p(h) IA. ) for some hEGA, since A. is a real weight ofp. 

For each UEtJ A' choose guEG so that gu·A. = u 
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and gA = 1 (and so that Ut-+gu is a measurable section of G 
-- & A ).We then define Iu): = p(gu) IA )eVA. The equivar­
iance of <I> shows that <I> ( I u» = u for any ue& A' so that I u) 
is determined up to a phase factor by u. 

Definition 1: The covariant symbol 12 or Q-symbol of an 
operator Ae.2'" ( VA) is defined as the function on the coad­
joint orbit & A given by 

QA (u): = (uiA lu). (1) 

Since u determines I u) up to a phase factor, QA (u) depends 
only on u; in fact, QA is a continuous function on & A' Let 
Y A denote the (finite-dimensional) space of functions 
{QA :Ae.2'" ( VA )}. 

The essential point of the coherent state construction is 
that no information is lost on passing from operators 
Ae.2'" ( VA ) to their symbols QA' This can be verified by ana­
lytic continuation arguments, using the Kahler structure of 
& A' However, a direct algebraic proof for general compact 
semisimple groups was first given in an unpublished article 
of Wildberger. 3 We give our version of his argument here 
since it provides an important stepping stone to the Straton­
ovich-Weyl quantizer. 

Theorem 1: (Wildberger) The symbol map 
Q:.2'" ( VA ) --+ Y A is one-to-one. 

Proof" For each positive root a of G we can choose root 
vectors Xa, Yaeg for the roots a, - a, respectively, so that 

(v,dp(Xa )w) = (dp( Ya )v,w), for all v,weVA. 

We partially order the (complex) weights of p by 
J1, > v iff J1, - v = CI a l + ... + ckak, where {al,.·.,ak} 
are the simple roots and CI "",Ck are non-negative integers 
not all zero. There is a greatest element A for this ordering, 
namely the extension to tC of the functional 21TiA on t. We 
order pairs of weights lexicographically by (J1"J1,') > (v,v') if 
J1, > v or J1, = v and J1,' > v'. Let HI' denote the weight space of 
J1,; then 

.2'" ( VA) = e LI',Y' 
I',Y 

where LI',Y is the vector space spanned by {Iv) (wl:veHl" 
weHy}. For each Ae.2"( VA)' letA = l:1',yAI',y be the corre­
sponding decomposition of A, with AI',yeLl"Y' 

The representation 1T: = p ® P of G acts on .2" ( VA ) by 
1T(g)A =p(g)Ap(g-I). For XegC

, we have 
d1T(X)A = dp(X)A - A dp(X). In particular, 

d1T(Xa )lv)(wl = Idp(Xa)v)(wl-lv)(dp(Ya)lI.Il, 

d1T( Ya ) Iv) (wi = Idp( Ya )v) (wi - Iv) (dp(Xa )wl· 

Suppose now that Ae.2" ( VA ) with A 1= 0, but QA = 0 in 
Y A. Then (UI1T(g)A lu) = (g-I'uIA Ig-I· U ) =0 and so 
(uld1T(X)A lu) = 0 for ue& A' Xeg. 

Let (5,1]) be a maximal pair of weights for which we can 
find an A with QA = 0 and AS,1/ 1=0, If 5 < A, then 
AS,1/ = l:;"= I Ivi ) (Wi I, where {wp ... ,wm } is a basis for H1/ 
and VieHs with, say, VI 1=0. Since 1] < A andp is irreducible, 
dp(Xa )vI 1=0 for some positive root a. But then d1T(Xa )A 
has Q-symbol 0 and a nonzero (5 + a,1])-component, con­
tradicting the maximality of 5, Thus 5 = A, 

Next, if 1] < A then AA,1/ = Iv) (wi with veHA, weH1/' 
and wl=O; so for some positive root a, we have that 
d1T( Ya)A has Q-symbol 0 and a nonzero (A,1] + a) compo-

2666 J. Math. Phys., Vol. 31, No. 11, November 1990 

nent, contradicting the maximality of 1]. Thus 1] = A, and so 
AA,A is a nonzero scalar. , 

Now IA )eH", so 

QA (A) = (AlA IA) = AA,A (AlA) 1=0, 
contradicting QA = O. This shows that QA = 0 only if 
A=Q • 

III. MOYAL QUANTIZATION 

We now have the basic ingredients to construct a Stra­
tonovich-Weyl quantizer. We follow the path set forth in Ref. 
9, Sec. 4, for the group SU(2). 

It turns out that the Q-symbols are not satisfactory for 
this task, as they lack the all-important "tracial property" 
(see below). Another class of symbols, called "contravar­
iant"12 or "P-symbols," may be defined by duality. To see 
this, note that .2" ( VA) is a Hilbert space under the inner 
product (A,B): = Tr[A t B], but that At-+QA is not an iso­
metry from this Hilbert space into L 2( & A ). Nonetheless, 
the linearform on Y A given by QBt-+ Tr[A tB ) corresponds 
by the Riesz theorem to a unique P A eY A such that 

(PAIQB):= J P~(u)QB(u)dmA(u) =Tr[AtB). (2) 

(Here, * denotes the complex conjugate function and t de­
notes the adjoint operator.) Thus At-+PA is a linear bijection 
of .2" ( VA ) onto Y,t, since both spaces have the same finite 
dimension by Theorem 1. In order that PI be the constant 
function 1, we must renormalize the Liouville measure on 
the orbit so that m,t ( & A ) = d A; we maintain this normaliza­
tion hereinafter. 

It is straightforward to check the covariance of the Q­
and P-symbols: 

Qp(g)AP(g-l) (u) = QA (g-I· U), 

Pp(g)AP(g-I)(U) =PA(g-I· U), (3) 

for all ue& A' If we denote by 1" the quasiregular represen­
tation of G on L 2 ( & A ) restricted to Y A, i.e., 
[l'(g)f](u) = f(g- I· U ), the covariance property (3) may 
be rephrased as 

Q7T(g)A = l'(g)QA' P1T(g)A = l'(g)PA· 

Theorem 2: K:QAt-+PA is a positive invertible operator 
on Y,t, which commutes with h(g):geG}. 

Proof" K is bijective since QAt-+A, At-+PA are bijections. 
The positivity of K is seen, using (2), from 

(KQA IQA) = (PA IQA ) = Tr[A tA ) ;;.0. 

The fact that l'(g)KQA = Kl'(g)QA is just a restatement of 
(3). • 

We choose an orthonormal basis for Y A for which any 
operator commuting with 1"( G) has a matrix which is a di­
rect sum of scalar blocks, one for each irreducible compo­
nent of 1". As a consequence of Theorem 2, K and its positive 
square root K 112 are of this form. We can thus introduce a 
symbol that is "halfway" between the Q- and P-symbols. 

Definition 2: For Ae.2" (V,t), we define the Stratono­
vich-Weyl symbol WA eY A by 

(4) 
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Theorem 3: The symbol map A~ WA has the following 
properties: 

(i) it is a linear one-to-one map from"? ( VA ) onto Y A; 

(ii) WAt = W~; 
(iii) WI is the constant function 1; 

(iv) Wp(g)AP(g-') (u) = WA (g-I· U), for UEtJ A,gEG; 
(5) 

(V)L WA(U)WB(u)dmA(U) = Tr[AB]. (6) 
A 

Proof The bijectivity of A~ WA follows from the estab­
lished bijectivity of the Q-symbol map and the invertibility of 
K. 

It follows from (1) and (2) that QA t = Q ~ and 
PA t = P ~ for all A; thus K and hence K 1/2 commutes with 
complex conjugation, and so 

WAt = K1I2(Q~) = (K 1I2QA)* = W~. 
Since QI = PI = 1, we have WI = K 112 ( 1) = 1 also. 
The covariance property (5) is an immediate conse-

quence of (3) and (4). 
The tracial property (6) follows from (2), since 

L WA (u) WB(u)dmA (u) 
A 

= (W~I WB) = (K 1I2QAt IK 1I2QB) 

= (KQAtIQB) = (PAtIQB) =Tr[AB]. • 
The inverse map WA~A generalizes the Weyl corre­

spondence.6 We have baptized it the Stratonovich-Weyl cor­
respondence, because conditions essentially equivalent to 
those of Theorem 3 were first outlined in a remarkable paper 
by Stratonovich.20 

. 

Remark 1: The importance of the property (v) cannot 
be overestimated. It tells us that quantum and classically 
calculated averages coincide, thus ensuring that we are 
building a genuine Moyal theory. In fact, Theorem 3 says 
that the Stratonovich-Weyl correspondence is a unitary 
equivalence of the representation r of G on Y A' regarded as 
a subspace of L 2 ( tJ A ,dm A ), and the representation 1T of G 
on ..? ( VA ). In other words, Y A is a representation space of 
the representation 1T = P ® p. Thus one can decompose Y A 

as 

Y A = enA(r)Vr , 
r 

where the sum runs over the highest weights r of the unitary 
irreducible subrepresentations of P ® p, and nA (r) is the 
multiplicity of the corresponding subrepresentation. In par­
ticular, since P is irreducible, Schur's lemma shows that 

nA(O) =dim({AE,,?(VA):1T(g)A =A, for all geG}) = 1. 

In retrospect, we see that one of the main points of the pre­
vious theorems is to establish that L 2 ( tJ A) accomodates a 
representation equivalent to P ® p. This was recognized some 
time ago as a necessary condition to have a star-product on 
tJ A with complex conjugation as an involution.21 

Remark 2: Suppose that A~ WA is any symbol map sat­
isfying the conditions of Theorem 3, its support space being 
a d ~ -dimensional subspace of L 2( tJ A) which we can take 
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to be Y A' The intertwining operator T: WA ~ WA is then a 
unitary operator on Y A which commutes with r( G). Thus 
the matrix of T (with respect to the basis which diagonalizes 
K) is a direct sum of unitary blocks of size dr X dr' and each 
block commutes with the complex-conjugation operator. 
Moreover, since T( 1) = 1, the 1 X 1 block corresponding to 
r = 0 is 1. Conversely, any matrix with these properties de­
fines an operator T so that A~ T( WA ) satisfies the condi­
tions of Theorem 3. 

Forinstance, ifp ®p is simply reducible [i.e., nA (r) = 1 
for each r], then T has a diagonal matrix with diagonal en­
tries ± 1, the sign being positive for the (r = 0) entry. 

In summary, the Stratonovich-Weyl correspondence 
for compact semisimple groups always exists, but need not 
be unique: The conditions given for the intertwining opera­
tor T provide the exact measure of non uniqueness. In other 
words, the correspondence K between covariant and contra­
variant symbols has in general several square roots which are 
reality-preserving, one-preserving, covariant in the sense of 
(5), and tracial. Among these we have selected the positive 
square root (4), to obtain a standard recipe for the Stratono­
vich-Weyl correspondence. 

So far, our definition of the Stratonovich-Weyl symbols 
has been entirely nonconstructive. We now give an explicit 
computational construction of the Stratonovich-Weyl sym­
bols; as a bonus, we derive by the same procedure an explicit 
formula for the Berezin P-symbols. In order to do so, we find 
the diagonal elements of the matrix of K. 

The reproducing kernel of the Hilbert space Y A may be 
written as 

fA (u,v): = L Y;rk (u) Y;~k (v), 
r,r,k 

where {Y;rk:k = 1, ... ,d,J is an orthonormal basis of the rth 
copy of the unitary irrepPr (as a subrepresentation of r), for 
r= 1, ... ,nA(r). Note that nA(r)<.dA since the projection 
G -+ G /G A 'Z tJ A induces a one-to-one mapping of 
L 2(tJA,dmA) into L 2(G,dg), where, as usual, fGdg= 1. 
Thus we can choose an orthonormal basis for Y A by the 
recipe 

Y;rd u ): = ~dr/dA ~kr(gu)' 

where ~kr are matrix elements of the unitary irrepPr ' (The 
Y;rk may be thought of as a kind of generalized spherical 
harmonics on compact coadjoint orbits.) Thus 

d n,,(r) d y 

IA(u,v):= L-r L L ~rr(gu)~k~(gv)' (7) 
r dA r=lk=1 

We determine the kernel corresponding to the operator 
K in the following way. The Clebsch-Gordan coefficients 
corresponding to the decomposition 
PA ®pp = ernA,p (r)Pr are computed from the matrix ele­
ments of PA' PI" and Pr by integrating over G. It can be 
proved that 

e ~ I ~r) (~~I:' ;) 
= dr L ~,. (g)~~. (g)~Ji (g)dg, 

Figueroa, Gracia-Sondia, and Varilly 2667 



                                                                                                                                    

where i,i' = 1, ... ,d ... ; j/ = 1, ... ,d ... ; k,k' = 1, ... ,dy , with an 
obvious notation for the kets in the several representation 

spaces. Let X denote the highest weight of P ... ; of course, 

~} (g) = ~;."'(g) since P~ = P ... is the conjugate repre­
sentation of P ... ' Thus, in particular, we have 

e ;Iir) (r;rl~ ;) 
= d y L ~r,'(g)~1;,. (g)~f;."'(g)dg, (8) 

where, of course, 11) now denotes the highest weight state. 
We have selected the phase factor for these indices so that 

(r;rl~ ;) = ~ ; Ir;r) >0. 

I (ulv) 12 = I (gu 'A Igv'A ) 12 

= I (A Ip(gu- 1 )p(gv) IA ) 12 

It follows from the Peter-Weyl theorem and (8) that 

~1;,. (g)~f;."'(g) 

= frk e ;Iir} (r;rl~ X} y X ~ kr(g)· 

From (2) we obtain 

QA (u) = (uiA lu) = (u ILA PA (v) Iv) (vldm ... (v) I u) 

= LA PA (v) I (ulv) 1
2
dm ... (v), 

so that I (ulv) 12 is the kernel of K -1. Now 

~Ir,r) (r,rIA ~) /A ~ Ir',r') (r'.r'l~ 
] k r A A \A. A r' k' I 

't,r,k' 

using the orthogonality relations for the Clebsch-Gordan 
coefficients. Comparing this kernel with (7), we see that the 
orthonormal basis {Y ~rk } diagonalizes K - 1. It is now clear 
that each d y X d y block of K is a scalar matrix with eigenval­
ue 

X LA QA (v) Y~~ (v)dm ... (v) Y~rk (u) (9) 

(choosing the phase factor so that 

~ y;r I ~) 
is positive). 

It is worth noting that the same arguments yield an ex­
plicit expression for Berezin's contravariant symbol: 

/A yr,rl~)-2 
PA (u) = L \A. ,I\, 

y,r,k 

X LA QA (v) Y~~ (v)dm ... (v) Y~rk (u), (10) 

which generalizes the P-symbol given in Ref. 9 for the SU (2) 
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case. As far as we know, this expression has not hitherto been 
derived. We remark that the formulas (9) and (10) may be 
gainfully used to compute quantum partition functions. 

The symbol calculus is now reformulated by introduc­
ing a family of self-adjoint operators indexed by the points of 
phase space, namely, the Stratonovich-Weyl quantizer: 

/A y,rIA)-1 
!l" (u): = L \A. r A 

y.',k 

for which 

WA(u) = Tr[A!l"(u)], (12a) 

A = LA WA (U)!lA (u)dm ... (u). (12b) 

Indeed, (12b) is simply a reformulation of the tracial prop­
erty (6). This property is thus equivalent to the possibility of 
quantizing WA ~A and "dequantizing" A~ WA with the 
same operator kernel fiA : this is characteristic of Moyal 
quantization. It should be clear that the operators !l" (u) do 
not depend on the particular choice of basis of Y A • 

Note also that (12) is equivalent to 

WOA(U) (v) = Tr[!l" (U)!lA (v)] = fA (u,v). (13) 

Define now Y~'k as the operator corresponding to the 
symbol Y~~k by (12b). One has by this definition: 
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AA A 
OA (U) = I Y yrk Y yrk (u). (14) 

y,r,k 

We may call the Y;rk generalized Wigneroperators, because 
they coincide with the ordinary Wigner operators22 for the 
SU(2) case. Also, we have the suggestive formula 

• A A • fA 
(All Y yrk IAj) = \ i -i Ir,r) 

j k . (15) 

The formulas ( 12 )-( 15) display the intrinsic simplicity 
and elegance of the SW-symbols, which is somewhat hidden 
in the coherent-state format. The corresponding formulas 
for the operators whose Q- and P-symbols are Y;:k are more 
cumbersome; for instance, the (ij) matrix element ofthe P­
symbol operator is 

~ (A Yk,rIAj') (some phase factor) -y . 
dA I 

X~ Y;rl~)· 
(An equivalent formula is given without proof in Perelo­
mov's book. 19 ) 

To avoid minor technical problems, the theory has been 
developed so far for simply connected groups; however, 
since any compact semisimple Lie group is isomorphic to the 
quotient of its simply connected covering group by a finite 
central subgroup, the formalism goes through for that larger 
class of groups; it suffices to select the appropriate subsets of 
representations and orbits. 

To illustrate the theory, we give a fully explicit formula 
for 0 A in the SU (2) case. Here, A = j is a non-negative half­
integer, the coadjoint orbits for j > 0 are spheres S2; and we 
adopt the conventional normalization of the spherical area 
measure: f.,dn = 417', in order to use the ordinary spherical 
harmonics Y/m in the formula. Thus we have, for j > 0: 

j 

0j(n) = I Z{r(n) [jr) (jsl, 
r,s= - j 

where 

I Ij) Y/,s _ r (n) (16) 
s-rs 

are the matrix elements of the quantizer. 

IV. THE SCALAR FOURIER TRANSFORM FOR 
COMPACT SEMISIMPLE GROUPS 

The Stratonovich-Weyl quantizer (11) provides a royal 
road to Fourier analysis for compact connected Lie groups 
as a function-space calculus. One wishes to consider the 
Fourier transform of a function on the group G as a function 
on some "dual" manifold G with appropriate symmetry 

A 

properties. First, suppose that Gis semisimple. We declare G 
to be the union of the integral coadjoint orbits, which is para­
metrized by (A,U), with A a dominant integral weight of G 
and UE& A' (Note that if one adopts the correspondence 
PA +-+& A + {j, then G is alternatively given by A X F, where A 
is the set of all dominant integral weights and F is the flag 
manifold G IT.) 

The twisted product or Moyal product of two functions 
on G is defined by 
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(jXh)(A,U): = LA LA Tr[OA (U)OA (V)OA (w)] 

Xf(A,V)h(A,w)dmA (v)dmA (w). 

The tracial property (6) of the Stratonovich-W ey I sym­
bols is equivalent to the tracial identity for the twisted prod­
uct: 

LA (jXh)(A,u)dmA (u) = L/(A,U)h(A,u)dmA (u), 

(17) 

since the left-hand side equals 

LA L/(A,V)h(A,W) LA Wo'A(V)o'A(W) (u) 

XdmA (u)dmA (v)dmA (w) 

= LA L/(A,V)h(A,w)Tr[oA (V)OA (w)] 

XdmA (v)dmA (w) 

= L/tA,V)h(A,v)dmA (v) 

on using (13). 
Remark: Note that the restriction off X h to each orbit 

& A belongs to the finite-dimensional space .Y A' even though 
f, h may be arbitrary integrable functions on each orbit; we 
therefore lose little by restricting the twisted product to the 
space of functions on G which belong to .Y A on each orbit 
& A • The definition corresponds to demanding that 
WA X WB = WAB for A, BE.!/'( VA)' In view of (5) the 
Moyal bracket - i(j Xg - g Xj) and the Poisson bracket of 
a general element of .Y A and a symbol of the type dp A (g) are 
proportional, so the Moyal product is certainly a deforma­
tion product; the proportionality factor, however, may vary 
between orbits. 

The covariance property (5) of the Stratonovich-Weyl 
symbols yields equivariance of the twisted product: if 
fg(A,U): =f(A,g-I· U), then (jxh)g=fgXh g. This oc­
curs because the twisted product of functions on the phase 
space G is the Fourier image of the convolution off unctions 
on the group. This is also true for the "ordinary" Moyal 
product where G is the Heisenberg group and the Fourier 
transform is the familiar one.23 For compact semisimple 
groups, we must first explain what the Fourier transform is; 
indeed, what happens is that the natural link between Moyal 
quantization and harmonic analysis determines the explicit 
form of the Fourier transform for such groups. 

The Fourier kernel is defined as the function on G X G 
given by 

E(g;A,u): = Tr[pA (g)OA (u)] = WPA(g) (u). (18) 

This represents a departure from Wildberger's original sug­
gestion3 to use QPA(g) (u) as the Fourier kernel; what distin­
guishes (18) from this kernel is the tracial property (6), 
which allows us to obtain a Fourier inversion theorem. 

Definition 3: If fa I(G), we define its Fourier trans­
form .'7 f on G by 

Yf(A,U): = Sa E(g;A,U)f(g)dg. 
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We proceed somewhat formally in what follows. 
Let us write eg (A,U):= E(g;)..,u); then, applying (12b) 

twice, we obtain 

(eg Xek ) (A,U) 

= i WPA(g) (v) i WPA(k) (w) 
/1',.{ ~'A 

XTr[O.< (u)O.< (v)O.< (w) ]dm.< (w)dm.< (v) 

= Tr[p.< (g)p.< (k)O.< (u)] = egk (A,U). 

From this it follows that .'7 (f.. *J; ) = .'7 f.. x.'7 /2 for 
/1 .h. EL I ( G), since 

.'7 (f.. *J; ) (A,U) 

= LL E(glg2;)..'U)f.. (gl)J; (g2 )dgl dg2 

= L L (eg, Xeg,) (A,U)f.. (gl)J; (g2 )dgl dg2 

= (.'7f.. X.'7J; )(A,U). 

Let X.< denote the character of P.< . 
Theorem 4: The Fourier kernel (18) has the following 

properties: 

(i) E*(g;)..,u) = E(g-I;)..,U); 

(ii) L E(g;)..,u)dm.< (u) = X.< (g); 
A 

(iii) E(hgh -I;A,U) = E(g;A,h -I· U ); 

(iv) L E(g;A,U)E*(g;A,V)dg= (lId.<)I.«u,v). (19) 

Proof: One has 0.< (u)t = 0.< (u); and so 

E * (g;A,U) = Tr[ 0.< (u)tp.< (g)t] 

= Tr[p.< (g-I)O.< (u)] = E(g-I;)..,U). 

From (12) we get faA 0.< (u)dm.< (u) = I, which gives (ii). 
The covariance property (iii) is immediate from (5). 

To derive (iv), notice that 

L (ulp.«g)lu)(vlp.«g-I)lv)dg 

= r (ulp.< (g) lu) (vlp.< (g) Iv)* dg = _1_ I (ulv) 12, JG d.< 

and thus 

L E(g,A,U)E*(g,A,V)dg 

2670 

= L _1 ~ 
r,r,k d.< 

i,l,k' 

X I (u'lv') 12Y;~k (u') Y~lk' (v') 

Xdm.< (u')dm.< (v') Y;rk (u) Y~~k' (v) 

= L _1 /J. y,rIA)-2 
r,r,k d.< \A, r J. 

X Y;rk (u) Y;~ (v) = _1-1.< (u,v). 
d.< 

J. Math. Phys., Vol. 31, No. 11, November 1990 

• 

As a consequence of Theorem 4, the Fourier transform 
of a central function is constant on each orbit; note also that 
(19) gives a representation of the quantizer as an operator 
integral over the group: 

0.< (u) = d.< L E*(g;A,U)P.< (g)dg. 

Finally, we get the Fourier inversion theorem for com­
pact semisimple groups. 

Theorem 5: 

leg) = L d.< i E*(g;A,U).'7/(A,u)dm.< (u). 
.< a'A 

Proof If g = e, the identity for G, we find that 

L d.< i .'7/(J.,u)dm.< (u) 
.< t'l A 

= L d.< r i /(g)E(g;A,u)dm.< (u)dg 
.< JG t'/A 

= L d.< r /(g)X.< (g)dg =/(e), 
.< JG 

by the Plancherel formula for compact semisimple groupS.24 
The Fourier transformation intertwines the group 

translation 19/(g'): = /(g - Ig') with twisted multiplication 
by eg , since 

.'7(lgj) (A,U) = L E(gk;)..,u)/(k)dk 

Thus 

= L (eg Xek )(A,u)/(k)dk 

= (eg X.'7j) (A,U). 

~ d.< LA E*(g;A,U).'7/(A,u)dm.< (u) 

= L d.< i eg~' (A,U).'7/(A,u)dm.< (u) 
A rfA 

= L d.< i (eg~' x.'7j) (A,u)dm.< (u) 
.< a'A 

= L d.< i .'7(lr,j) (A,u)dm.< (u) 
.< t'J'A 

= 19.,/(e) =/(g) 

on using the tracial identity (17). • 
If / is of the form h #*h, where hEL 2( G) and 

h#(g) =h*(g-I), then .'7/= (.'7h)*X.'7h and so an­
other application of the tracial identity ( 17) yields the Parse­
val/ormula: 

L If(g) 1
2
dg = ~ d.< LA 1.'7/(A,U) 1

2
dm.< (u). 

The Fourier kernel (18) is the perfect analog of an ordinary 
Fourier exponential; at this point the reader can see that it 
contains all the necessary information for a functional Four­
ier theory for compact groups, equivalent to the ordinary 
operatorial Fourier theory but in a much more concrete 
form. It is evident now how the theory presented here can be 
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coupled to ordinary Fourier series theory, yielding the func­
tional Fourier analysis for general compact connected Lie 
groups. 

Remark: The idea of employing the orbit method to ob­
tain an autonomous scalar Fourier theory for compact 
groups is due to Wildberger. 3 However, he did not have at 
his disposal the "correct" symbols, so he was stopped short 
of theorems of the Plancherel-Parseval type. In our formu­
lation, the need for singular integrals2 and in general the 
embarrassing convergence difficulties pointed out by Helga­
son' have vanished. 

For the case G = SU(2), the Fourier kernel is calculat­
ed explicitly as follows. We use the angle-axis parametriza­
tion ofSU(2): let 

g(t/J,m): = exp( - !ilp(m, 0', + m2 0'2 + m3 0'3 », 
where 0',,0'2,0-3 are the Pauli matrices. Since the diagonal 
matrix elements (16) of the quantizer are cylIndrically sym­
metric, we write 

. 2j 21 + 1 (j 
Z'kk (cos 0) = L -. - k 

I~O 2J+ 1 
where the PI are the Legendre polynomials. With these con­
ventions, we obtain: 

j 

E(g(t/J,m);j,n) = L e- ik,pZ{dm-n). (20) 
k~ -j 

As an example of the usefulness of the scalar Fourier 
theory, we note that this formula leads to an interesting 
expression for the matrix elements of SU (2). According to 
the definition (18), we have 

j 

E(g;j,n) = L .@~s(g)Z~(n). 
r,$= -j 

Thus 

(2j + 1)7(.@~~)(i,n) = Z~r (n). 

Now the Fourier inversion formula may be applied, employ­
ing the explicit expression (20) for the Fourier kernel. De­
tails of this derivation are given in Ref. 23. The result is 

.@~(g(t/J,m» = f ff!+T (j I Ij) 
I~O 2J + 1 r s - r s 

t- (j II j) - ik,p '4-y () X£.. 0 k e 'I/'t'1T I.s- r m . 
k~ _j k 

This new form of the representative functions .@~s uses what 
is perhaps the most natural parametrization of the group 
SU(2). It is clear that analogous formulas may be derived 
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for other compact connected groups, parametrized by 
T X G IT, where T is a maximal torus. 
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Star-product quantization as an autonomous quantum theory is reviewed with emphasis on its 
relatio? to path integral and Hilbert space formulations. Quantization of the usual Heisenberg 
group IS .used as an example. When phase space is the cylinder, this group is replaced by E(2), 
the E~ch~ean group in two dimensions. This case is worked out in detail. In doing so, 
polanzattons on the cylinder are discussed and a phase space path integral is constructed. 

I. INTRODUCTION 

In most situations, a quantum theory comes about by 
first considering an analog classical theory. That is to say we 
start with a classical description of a physical system, a 
Hamiltonian formulation in phase space, for instance. Phy­
sicists commonly use one of two procedures to quantize such 
a system. On the one hand, one can use Hilbert space meth­
ods. In the most elementary prescription, one assigns to 
functions in phase space operators acting on a Hilbert space 
and one sets an eigenvalue problem for these operators to 
find the spectrum of physical observables. The most math­
ematical formulation of this quantization procedure is per­
haps given in the geometric quantization program. I How­
ever, this program encounters difficulties when quantizing 
nonlinear phase functions. 2 Another formulation of quan­
tum mechanics is in terms of path integrals first developed 
by Feynman.3 In its original form one considers an exponen­
tial of the classical action and constructs the quantum me­
chanical matrix elements directly by summing this quantity 
"over all paths.,,4 Many of the nuances of this approach 
come from defining a measure for such a sum. Although at 
first regarded as a clumsy reformulation, Feynman path in­
tegrals are now commonly used in quantum field theory.5 

The moral here is that one should always welcome new 
methods. In this spirit, this article uses yet another formula­
tion of quantum theory. Quantization via star-products was 
introduced in Ref. 6 as an autonomous approach to quantum 
mechanics. Instead of dealing with operators, star-quantiza­
tion deals directly with phase space functions and an h-de­
formed associative product: the star-product. It has been 
shown that it leads to an independent calculation of physical 
spectra of elementary systems (harmonic oscillator, angular 
momentum, hydrogen atom). 6 Here we would like to work 
out the whole program when phase space is the cylinder. 
Quantization on the cylinder is an interesting laboratory to 
relearn quantum mechanics. Formal transcriptions from 
conventional quantization of the plane fail if one does not 
take into account the periodicity of the configuration space 
coordinate. This of course will imply the discretization of the 
spectrum of the momentum observable, which in turn will 
come back to haunt us if we try to build a phase space path 
integral by the conventional method. Following the star-

.) Address after 1 October 1989: Department of Physics, University of Cali­
fornia at Los Angeles, Los Angeles, California 90024-1547. 

product philosophy,6.7 one would like to see how these 
known phenomena appear in terms of phase space functions 
only. It is also. interesting to see how star-quantization re­
lates to more conventional formulations of the problem. The 
basic ingredient in our approach is the utilization of e(2) as 
the fundamental quantum algebra. It has been noted7.8 that, 
on the cylinder, e(2) is the appropriate algebra of preferred 
observables. Phase space can then be regarded as an orbit of 
the group E(2) on the dual of its Lie algebra e(2)·. 

The paper is organized as follows. Section II reviews 
some of the relevant mathematial objects used in star-quanti­
zation. It can be used as a reference for the following sec­
tions. Section III gives the quantization of the Heisenberg 
group in the star-product language. The idea here is to make 
clear by the example of ~his well-known case some of the 
methods of star-quantization. Rather than stress the autono­
mous approach of star-quantization, we seek to emphasize 
its relation with the Hilbert space and path integral methods. 
Section IV constitutes the bulk of this work. In Sec. IV A the 
group parametrization to be used is fixed and some formulae 
are gathered in these coordinates for later use. Next in IV B 
the so-called star-exponential of the Lie algebra generators 
(see Sec. II) is constructed. The eigenprojectors and spec­
trum for the case of the Hamiltonian of the free particle are 
given as an example of an autonomous quantum calculation 
in this approach. An adapted Fourier transform is intro­
duced in IV C inspired by the concept of a star-representa­
tion [Eq. (2.7)]. It gives the (quantum) phase space func­
tions to be considered. The star-product of two such 
functions is given in IV D as a prelude to IV E where a phase 
space path integral is constructed in the cylinder. The con­
nection with Hilbert space methods is given in IV F via the 
concept of star-polarization (see Sec. II). Both position and 
momentum wave-functions can be found in this approach. A 
relation between operators and phase space functions 
(Weyl-Wigner correspondence) can then be sought. This 
relation can then shed light on the independent construction 
of the path integra1.9 These ideas are confirmed in IV G. 
Finally, the interesting case of the universal cover of E(2) is 
considered in IV H. Here,the so-called theta sectors and 
"winding numbers" appear in a natural fashion. 

II. GENERAL REMARKS ABOUT STAR-PRODUCTS 

It has been shown in Ref. 6 that quantization can be 
understood as a deformation of the algebra of observables in 
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phase space. This deformation is given by defining a star­
product, that is to say a new product law (associative but in 
general noncommutative) between functions in phase space. 
It is useful to introduce the notion of a ?-invariant star-prod­
uct. Given a phase space W, consider a Lie algebra ? of 
functions in W with the Poisson bracket. A ?-invariant star 
product satisfies 

a*j - j *a = ili{aJ}, (2.1) 

for all ae?, jeC'" ( W), where { , } denotes the Poisson 
bracket in the symplectic manifold W. The physical meaning 
of this invariance is the selection of certain observables 
whose geometric meaning is preserved by quantization. In 
other words, their equations of motion will be quasiclassical, 
nonanomalous by construction. 

A basic tool of the theory is given by the star-exponen­
tial of a given Hamiltonian H: 

'" 1 ( t )n exp(tH) = L ,-:- (H*)n. 
n = 0 n. Iii 

(2.2) 

When the series converge to a distribution exp(tH) on 
Wand has a Fourier expansion of the form 

exp(tH) = L 1T). e- j/Ill)., 

).EI 

(2.3) 

we can call I (a sequence in C) the spectrum of H, A an 
eigenvalue of H, and 1T). the projector associated with A. In 
general, the spectrum will be the support of the Fourier 
transform (in t) of exp (tH). Concrete examples ofthis have 
been given.6

,7 With the aid of exp, the time development of 
any function of phase space can be given: 

j(t) = exp(tH)*j*exp( - tH). (2.4) 

Here H denotes the Hamiltonian function. It is easily seen 
that j(t) obeys 

dj 
dt=j*H-H*J, (2.5) 

which is the full quantum equation of motion in this formal­
ism. 

The star-exponential has interesting properties with re­
spect to functions belonging to the Lie algebra? introduced 
above. Let G denote the Lie group associated with? by the 
exponential map. If three elements a,b,c e ? are related by 
the Baker-Campbell-Hausdorff formula eO .eb = eC we 
have 

exp(a)*exp(b) = exp(c). (2.6) 

By defining E(eO
) = exp(a) we can regard exp(a) as a 

function on the group G. This leads to the following. 
Definition: A star-representation of G on Wis a distribu­

tion W on G with values in C'" ( W) such that: 
(i) The domain D and the kernel of Ware closed under 

the convolution in the test function space. 
(ii) W is adg invariant in the sense that, for every a e 

?W 'adg (a) = ad*g (a) W. 
If we have a function E(g) we can try to define a star­

representation W by 

(2.7) 
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If conditions (i) and (ii) hold, we arrive at an explicit 
expression for the g-invariant star-product; namely, 

'!l(f..oj;) = '!l(f..)*'!l(J;), (2.8) 

where on the left-hand side we have the convolution ofJ;. and 
j; in D. The reason that this gives us a star-product in phase 
space is that when the Lie algebra g is chosen appropriately, 
we take for phase space an orbit of G on the dual of its Lie 
algebra ?*. Since the elements of? can be considered as the 
restrictions of linear functions on ?*, we can consider 
exp (a) as a function on W. 

It is seen, therefore, that the construction of the function 
exp is a way to define the star-product. This is of practical 
importance as the star-exponential of the Lie algebra ele­
ments can be found directly by solving differential equations. 
This can be seen as follows. Let Q = gAB LA L B be an element 
of the center of the enveloping algebra of? Because W can 
be thought of as an orbit of G on?*, Qw (Q restriction to the 
orbit) is a constant function on W. Let I(a) and rea) denote 
the vector fields associated with left and right translations on 
G. One finds by differentiation of (2.6) that 

a* exp = - iii I(a)exp, 

exp *a = iii r(a)exp. 

It follows 7 that 

gABI(L A) I(L B)exp = - Qw expo 

(2.9) 

(2.10) 

(2.11 ) 

The eigendistributions of the group satisfylO the same 
equations. Here, however, we look for solutions that are adg 
invariant in the sense of (ii). 

One can establish the correspondence of this formalism 
with conventional Hilbert space quantum mechanics via 
star-polarization. 11

,7 As the name suggests, this method is a 
generalization of the analogous polarization 1 used in geo­
metric quantization (Ref. 12 provides an introduction for 
physicists). Here it works as follows. 

Let Y be a topological subspace of C'" ( W). Note that 
Y is said to be a star-polarization if it consists ofjeC'" (W) 
such that 

j*a = A(a)J, aego, (2.12) 

where?o is a subalgebra of? and a .... A(a) is a character of 
?o. Associativity of the star-product guarantees the stability 
of Y under the transformationj .... b *J, beC'" ( W). This sta­
bility seems to provide a larger scope of applicability than 
polarizations in the sense of geometric quantization. It 
should be stressed, however, that star-quantization is al­
ready a complete quantum theory unlike the stage of pre­
quantization in the geometric quantization program. By cir­
cumventing Hilbert space methods, we can in fact make a 
direct connection with quantization via phase space path 
integrals. 13 

III. QUANTIZATION FOR THE HEISENBERG GROUP 

One would like to see how star-quantization works in 
the simplest example: quantization in the sense of Dirac. 
Consider therefore,the one-dimensional Heisenberg algebra 
h and seek to construct an h-invariant star-product. Let a 
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basis for A be (e,q,p) .·Consider an element of the Heisenberg 
group H defined via the exponential map 

One can utilize the BCH formula to obtain the well-known 
group law 

u-(xo,x I,X2 )ou (YO'YI,Y2) 

= u(xo + Yo + !(xlY2 - X2Y1 ),x l + YI,X2 + Y2)' (3.1) 

In this parametrization, the vector field I (Y) and r(y) corre­
sponding to left and right translations in the group manifold 
are' calculated to be 

-l(y) =yAJA + !(yAx)Jo, 

r(y) =yAJA -!(yAx)Jo' 

where 

(3.2) 

(3.3 ) 

JA'=~, A = 0,1,2, and aAb = a lb2 - a2bl • 
JXA 

The orbits of H on the dual of its Lie algebra A* are deter­
mined by fixing the value of e.We obtain therefore conven­
tional phase space with coordinates q'p as an orbit. 14 The 
differential equation for exp is therefore given by [see Eq. 
(2.11)] 

J i 
l(e)exp = - exp = - - exp, 

Jxo Ii 
and its most general A-invariant solution given by 

exp = j(x l,x
2
)e - ilfi{x"e + x,q + x,p), 

exp,; (a)= j(x l,x2)e- ilfi{x'a). 

(3.4) 

(3.5) 

The arbitrariness of the function f( x I ,x2 ) reflects the 
possible choice of orderings that can be considered. Here we 
will only consider the casej= 1 that corresponds to Weyl 
(symmetric) ordering. 

With the aid of the function exp consider the following 
adapted Fourier transform [see Eq. (2.7) ] given formally as 

j(t) = f f(a)exp,;(a)da, (3.6) 

and explicitly as 

j(e,q,p) = f dxo dX 1 dx2J(xO'X I ,X2) 
JR' 
X e - ilfi{x"e + x,q + x,p). (3.7) 

On the orbit (phase space)we will be able to write simply 

j(q,p) = 1, dX 1 dX2f(xI,x2)e-ilfi(x,q+x,p). (3.8) 

We are now ready to apply relations (2.9) and (2.10) to the 
full adapted Fourier transform (3.7) and induce the star­
product of q and p with phase space functions of the form 
(3.8). We have 

(
iii J \" q*j(q,p) = q + 2 Jp y(q,p), 

( 
'Ii J \" j(q,p)*q= q-T Jpy(q,P), 

(
iii J \" p*j(q,p) = p - 2 aq Y (q;p), 
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(3.9) 

(
iii J \" j(q,p)*p = p +2 Jqy(q,P)' 

The results correspond in the operator language to the 
A A A 

multiplication of Q and P with an arbitrary operator F as 
given in Ref. 9. 

Our next task is to define a star product of two arbitrary 
phase space functions. Formally the result is given by [see 
Eqs. (2.6) and (3.8)] 

(f*g)(t) = fda f dPf(a)g(p)exp,;(r), (3.10) 

where yare parameters given by the BCH formula 
ea·eIi = eY • Here we have [Eq. (3.1)] 

Yo = ao + flo + !(a IP2 - fl 1a 2), 

rl =a l +PI' 
r2 = a 2 +fl2' 

For this formula to be of practical use however, we need 
to find the inverse of (3.7) for input into (3.10). In this case 
it is easy because the adapted Fourier transform is just the 
regular Fourier transform, 

(3.11 ) 

Once we have only phase space functions (via e = 1) in Eq. 
(3.10) it is easy to calculate the formula 

(f*g) (q,p) 

where t = (q,p) and 

1 
nt,t',t") = q' q" q 

p' p" p 

(3.12) 

One can also make an Ii-expansion of this integral and 
verify that 

(f*g) (q,p) 

'Ii 00 (1i)n 
= jg + T{f,g} + n~2 ~ P n(j,g) , (3.13 ) 

where pn denotes the nth-order bidifferential Poisson opera­
tor.6 Because p2(j,g) = P2(gJ) this star-product has an 
added symmetry: it is not only h-invariant but it is also invar­
iant for the algebra for all polynomials of order not greater 
than two. It will give the midpoint prescription to the path 
integral that we tum to next. 

Following Ref. 13, we define for eachj(q,p), a "kernel" 
kr(x,y) by 

kr(x,y) = f 2;"'f(p,X ~ y)eiPlfi(X-Y). (3.14 ) 

It follows that 

f dzkr(x,z)kg(z,y) =krog(x,y). (3.15 ) 

In our language this semigroup property is anticipated 
from the definition of the star-product by group convolution 
[Eq. (2.8) ]. Computation of the path integral is convention-
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al. One takes a partition of the time interval of interest: 
0< t, < ... < tn _, < t and a family of functions 
/k (q,p) = eilli{tk - 'k_11H. One can then apply relations (3.12) 
and (3.15) N times. In the limit as N ..... 00 one finds: '3 

f ndq( 7) dp( 7) exp{J.J'(p. dq - H)dt} 
T 27rll Ii Jo dt 

= 12;" exp{ tH (x; Y ,p) }ei1IiP(X - Y1, (3.16 ) 

where the left-hand side represents the Feynman phase space 
path integral and the right-hand side is just a modified Four­
ier transform of the star-exponential of the Hamiltonian 

expUH) = f (-!-)RJ,(H*)n. 
n=O iii n. 

A relation between the phase space path integral and the 
exp function is not surprising as both are related to the time 
evolution of a quantum system. One can make this relation 
more apparent by considering the correspondence of st~r 
quantization with conventional wave mechanics. Consider 
the following star-polarization (other polarizations are also 
possible: " 

ifJEe"" (R2) such that ifJ*q = o. 

The function ifJ has the form 

ifJ(p,q) = e-2illipqt/J(q). 

One can then define operators Q and P by 

q*ifJ = e - 2illipq ( Q'I') (q), 
p*ifJ = e-2iIIiPQ(P'I') (q) , 

A A 

where after normalizing the action of Q and Pis 

(Q'I')(x) = x'l'(x) = (xlQ 1'1'), 
A a A 

(P'I')(x) = in--:::-'I'(x) = (xiP 1'1')· 
ax 

( 3.17) 

(3.18 ) 

( 3.19) 

By relating operators F to their kernels (xiF IY) on the one 
hand and by relating the same operator to a phase space 
function/(q,p) on the other, one can attempt to find a rela­
tion between/(q,p) and (xIFIY). This method was devel­
oped by Berezin in Ref. 9 where he uses Eqs. (3.9) and 
(3.19) as his starting point. The result is 

(xIFIY) = f 2;,,/(p,X;Y)eiP11i(X-Y1, (3.20) 

where we find that (xiF IY) is nothing but our kf(x,y) ofEq. 
( 3.13 ). In particular 

(xle;/ftly ) = f 2;" exp{tH(x; Y,p )}ei1IiP(X-Y1. 

Since the left-hand side can be written as a phase space path 
integral, we arrive again at Eq. (3.15). 

IV. QUANTIZATION FOR THE £(2) GROUP 

A. Preliminaries 

One would like to repeat the previous quantization pro­
gram for the E(2) group, the group of inhomogeneous rota­
tions of the plane. As discussed previously/·s this group is 
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the appropriate one to consider in the case of a particle on S ' . 
Note that E(2) is it connected Lie group, the semidirect 
product of SO(2) and R2. In terms of 3 X 3 matrices E(2) 
can be realized in the form 

[A~t) ~]EE(2), (4.1 ) 

where 

{
COS t 

A(t) = . 
-SlOt 

sin t} 
cos t 

E SO(2) and 8ER2. (4.2) 

A natural basis for the e (2) Lie algebra is given by the 
matrices LO'P"P2: 

L,~ [ ~ 1 0 n 0 

p,~[~ 
0 

H P,~ [~ 
0 n 0 0 '4.3) 

0 0 

with commutation relations 

[Lo,Pd = P2, [LO,P21 = - PI' [P"P21 = O. (4.4) 

We want to consider group elements in the image of the 
exponential map: 

00 1 
eZoL,,+z.p = L -(zoLo + z·p)nEE(2). (4.5) 

n=O n! 

By changing coordinates, we can write one such group 
element as 

[
AU) 

U(x,t) = 0 
AU /2)xJ 

1 ' 

where t=zo, 

x = 2sin t /2z. 

In this parametrization we have 

U-' (x,t) = U( - x, - t), 

while the group law (BCH formula) is 

(4.6) 

(4.7) 

(4.8) 

U(x,a)·U(y./3) = U(A(a/2)y + A( - P /2) x,a + P), 
(4.9) 

and the vector fields associated with left (h ..... g-' h) and 
right (h ..... hg) translations on E(2) are 

-1(L) =!....-~xAa 
. 0 at 2 ' 

a 1 
r(Lo) = - + -x Aa, 

at 2 

t a . t a 
-1(P,) =cos--+sm--, 

2 ax, 2 aX2 
t a . t a 

rep,) =cos---sm--, 
2 ax, 2 ax~ 

(4.10) 

t a . t a 
-1(P2 ) =cos---sm--, 

2 aX2 2 ax, 
t a . t a 

r(P2 ) =cos--+sm--
2 aX2 2 ax, 

It is not hard to show that an E( 2) group element can be 
decomposed into a pure translation times a pure rotation. 
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Let (Lo,P) denote the most general element of e(2)*, the 
dual of the e(2) Lie algebra. 14 The coadjoint action of E(2) 
on e (2) * can be described as follows. A pure translation by x 
affects only Lo: 

Lo-+Lo + xAP, 
P-+P, 

while a pure rotation by t just rotates P: 

Lo-+Lo, 
P-+A(t)P. 

(4.11 ) 

(4.12 ) 

One then concludes that the orbits of E(2) on the dual 
of its Lie algebra e(2)* are generated by fixing p. P, that is, 
the orbits are isomorphic to cylinders. This is of course the 
phase space that we are interested in: the cotangent bundle to 
SI. 

B. The function exp for £(2)7 

The function exp should satisfy the following differen­
tialequation [seeEq. (2.11)]: 

/(P) '/(P)exp = - (R 2/~)exp. (4.13) 

In the parametrization we have been using, this equa­
tion is (R = 1) 

(4.14 ) 

We are interested in solutions that are e(2)-invariant. 
This requirement is met only if exp is a function of the combi­
nation (2Lo sin(t /2) + x·P). The solution that corresponds 
to symmetric ordering is [see Eq. (2.5)] 

exps- (a) = cos2(t/4)e-i/h(2Losin1/2 + x,Pl 

( 4.15) 

Here one should remark that exp is a function of the 
group with coordinates defined in Eq. (4.6). In particular it 
has the symmetry t-+t + 21T, X-+ - x. This is a departure 
from previous work7 where such a property was not satis­
fied. It becomes important when we try to implement the 
program described in Sec. II. 

Consider the star-exponential of the compact generator 
Lo(li= 1): 

exp(tLo) = cos2(t /4)e- r2L"sin 1/2 

+ sin2(t /4 )ei2L" sin 1/2. 

Recall [Eq. (2.2)] we can also write 

exp(tLo) = i: (- it)n (Lo*)n. 
n=O n! 

Therefore 

(Lo*)n = ;n~(exp tLo) 1,=0' 
dt n 

( 4.16) 

( 4.17) 

(4.18 ) 

Notice exp(tLo) is a function of period 21T, so it is natu­
ral to consider the Fourier expansion 

( 4.19) 
n 

One finds 
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(4.20) 

where I n denotes the Bessel function of integer order. If we 
interpret (4.17) as an example ofEq. (2.3) we find the spec­
trum of Lo to be the integers as expected. From (4.17) we 
find 

Lo. exp(tLo) = i~ exp(tLo) , at (4.21 ) 

and the following relations for the projectors lIn hold:6 

Lo.lIn = nlIn' 

(4.22) 
n 

IIn ·IIm = 6nm lIm· 

It is interesting to consider the star-exponential of 
H = ~L02, the Hamiltonian of the free particle. Since 
Lo*Lo = L02, we have 

exp(tH) = i: 1,( - it)n(Lo*)2n. 
n=on. 2 

(4.23) 

We can use (4.18) and (4.19) to find 

(4.24) 
m 

and (4.17) becomes 

00 1 ( it)n exp(tH) = L L,. -=- m2nlIm (Lo) 
n=O m n. 2 

(4.25 ) 
m 

Notice that we have found the spectrum of H without 
any Hilbert space methods. Skeptical readers can look at 
another derivation of exp (tH) given in Appendix B. 

The last equation can be written in an integral form if we 
realize that the lIn (Lo) are the Fourier coefficients of 
exp(OLo): 

1 i27T lIn (Lo) = - dO exp( OLo)ein9. 
21T 0 

Equation (4.25) becomes 

i
27T dO 

exp(tH) = ~(O,t)exp(OLo), 
o d1T 

where 

n 

(4.26) 

(4.27) 

(4.28) 

is the elliptic ®-function. Equation (4.27) motivates the 
next section. 

C. The adapted Fourier transform of £(2) 

We want to consider a transform with respect to the 
functionexps-(a) [Eqs. (2.7) and (3.6)]: 

j(t) = f j(a)exps-( - a)da, (4.29) 

with exps- (a) given by Eq. (4.13). Note thatj(a) is a func­
tion oftheE(2) group but more precisely of the image of the 
exponential map. That is,it has the symmetry (our group 
coordinates are x and t) 
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f(t + 21T, - x) =f(t,x). 

For such functions we can rewrite (4.29) as (fz = 1) 

f(Lo,P) 

= [11' dt r d 2xf(t,x)cos2 ~i(2L.,Sin 112 + x.PI, (4.30) 
o JR2 4 

wheref(Lo,P) is a function on e(2)* and by restriction to 
the orbit p.p = 1 can be considered a function on T*S I. Let A _ 

F denote the Fourier transform off on the x-variables: 

F(t,P) = L, d 2xf(t,x)eiX
•
P

• (4.31) 

Define functions on the orbit by 

With these conventions we shall consider phase space 
functions of the form 

[
11' A t 

f(Lo,(J) = dt F(t,f)cos2 -e12L" sin 112. 
o 4 

(4.33 ) 

We can now use Eqs. (4.10) to find the star-product of 
the Lie algebra generators with phase space functions of the 
form (4.30) and (4.33). It is more natural here to express 
the star product as an integral operator. That is, by specify­
ing the transformation off unction F(t,f). We have the cor­
respondence 

Lo*f(Lo,f)~ifz(~ - ~)F(t,f), 
af) at 

f(Lo,f)*Lo~ - ifz(~ + ~)F(t,f), 
af) at 

(
f)-t)A P2*f(Lo,f)~sin -2- F(t,f), 

f(Lo,f)*P2~sin«f) + t)/2)F(t,f), 

PI *f(Lo,f)~os( (f) - t)/2)F(t,f), 

f(Lo,f)*PI~os«f) + t)/2)F(t,f). 

(4.34) 

These relations will be useful in finding a correspondence 
between functions and operators. That is, the analog of the 
Weyl-Wigner correspondence. 

D. A star-product of two arbitrary functions 

One begins by going back to Eqs. (4.29) or (4.30) to 
write the formal result 

(f*g)(s) = f da f d{J f(a)g({J)exps ( - y). 

The parameters ycan be read out ofEq. (3.9): 

- Yo = a +{J, 

- 'Y = A( - a/2)y + A({J 12) x· 
(4.35 ) 

The idea here is towritefandgin termsofFand G. For 
example, 

- i d
2Q A . f(a,x) = --IF(a,Q)e- lX

•
Q • 

R2(21T) 
(4.36) 

We can then perform the integrations in x and y space to 
obtain delta functions that we can again integrate. By re-
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stricting to the orbit as before, we can write our final result as 

(f *g)(Lo,f) 

= [" da [" d{J F(a,f) + {J) G({J,f) - a) 

(4.37) 

Using the invariance properties of the group measure, 
we can shift our integration variables and write 

(f*g)(Lo,f) = [11' da(FoG)a,f)cos2 fe I2L.,sinal2, (4.38) 

A A 

where FoG is related to the convolution of the rotation group 
[see Eqs. (2.7) and (2.8)]: 

(FoG)(a,f) = [" da F(a - {J,T + {J) G({J,f) + {J - a). 

(4.39) 

We would like to point out some properties of F. Be-_ _ _ A 

causefhasthesymmetryf(a + 21T, - x) =f(a,x);Finher-
its 

F(a + 21T,f) + 21T) = F(a,f). 

This leads us to define kt , the kernel off, as 

kt(x,y) = F(x - y,x + y). 

( 4.40) 

(4.41 ) 

Notice that we now have periodicity in x,y independently 

kt(x + 21T,y) = kt(x,y), 

kt(x,y + 21T) = kt(x,y) . 

Equations (4.38) and (4.41) imply 
A A 

ktog«f) + a)/2,(f) - a)/2) = (FoG)(a,f) 

( 4.42) 

so that we can establish transitivity for the kernel (after res­
caling): 

(4.43 ) 

Finally, one can write the star product in terms of phase 
space functions only. To accomplish this, one needs to find 
the inverse of (4.33) for input into (4.38). The inverse can 
be written as (see Appendix A): 

F(t,f) = r dp sgn(cos-.!..) JR 21T 2 

X {i(P,f)COS2 ; e-12psinll2 

-f(p,f) + 21T)Sin2feI2PSinI12}. (4.44) 

The final result is not too illuminating. We shall consider a 
special case in the following. 

E. A path integral in the cylinder 

Calculations simplify considerably if one takes func­
tions even in the Lie algebra generators. That is, functions on 
T *S 1 even in Lo and of period 21T in f). For such functions 
A 

F(t,f) has in addition to the properties given above the fol-
lowing: 
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A- A- A-

F(t,O) = F(t + 217",0) = F( - t,O). 

Equation (4.33) simplifies to 

I(Lo,O) = .l[fT dt F(t,0)e'2Lu sin 112 

2 0 

while its inverse [Eq. (4.44)] can be written as 

F(t,O) = Icos ~I f dp /(p,0)e-,2psin 1/2 
2 JR' 217" 

( 4.45) 

( 4.46) 

= i2~(1 + ~ :p:Y12/(p,0)e-,2Plflsinl12, 

( 4.47) 

where in the last equation, fz is made explicit in order to 
better appreciate the quantum corrections (fz-deformations) 
inherent in star 'products. The star-product of two arbitrary 
functions in phase space with these properties is 

x I cos ~ cos ~ k(p,O +{3)g(Q,O-a) 

xexp{i2[ Lo sin a;.B -Psin ~ 

- Qsin ~]}. ( 4.48) 

We now repeat the calculation leading to Eq. (3.16), 
this time utilizing equation (4.43) with 

k/(x,y) = F(x - y,x + y) 

= f dp Icosx+YI/(p,x+z)e-,2PlflSin(X-YI2). 
JR 21Tfz 2 

( 4.49) 

Partition the time interval as before and consider the 
same family offunctions:lk (Lo,O) = eilfl(l. - I. ,)H. After N 
repetitions of ( 4.43 ), we have 

f dx 1 " 'diN f dpl" 'dpN + 1 

xexp{~ ~(Losin(Xk+12-Xk)_ (tk+1 -tdH} 

= f 2~ I cos x ~ y I (/~*" ·*ft)e-12Pltlsin(x-YI2), 

(4.50) 

where x = x(O), y = x(t), and 

dik = 1 cos (Xk + 12 -Xk )1 :~. 
In the limit N -+ 00 we can write suggestively with the precise 
meaning given above: 
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f IJ dx( 7) dp( 7)exp{ ~ f (PX - H)d7} 

= f .!!L( 1 fz2~) 112 
JR 21Tfz + 4 ap2 
Xexp tH(P,x + y)e-12Pltlsin(x-y/2), (4.51 ) 

thereby finding a phase space path integral on the cylinder 
intimately related to the star-exponential of the Hamiltonian 
albeit formally. 

F. Polarizations in the cylinder 

Once again we can apply the method of star-polariza­
tion to make contact with the more conventional form of 
quantum mechanics. Consider the following star-polariza­
tion: 

¢(LO,O)EC "" (T*S I) such that ¢*P2 = O. 

Using Eq. (4.34), we see ¢ is ofthe form 

[

71' t 
¢(Lo/J) = dt8(0 + t)cos2_e,2LusinI/2'11(0) 

o 4 

= cos2 .f.e -2L.. sin 012'11 (0). 
4 

A- A- A-

One then defines operators Lo, S, C by 

Lo*¢(Lo,O) = cos2 fe-,2Lusin 012 (Lo'll) (0), 

P1*¢(Lo,0) = COS2 fe-,2Lusin 012(Ov) (0), 

P2*¢(Lo,0) = cos2.f.e- t2L..sin 012(S'I1) (0). 
4 

Using Eq. (4.34) again we find 

A- a 
(Lo'll)(O) = i-'II(O), ao 

A- , 

(C'II)(O) = cos 0 '11(0), 

(S'I1)(O) = sin 0 '11(0) 

(4.52) 

(4.53 ) 

(4.54) 

which is the usual representation of e(2) on L 2(S I). We 
could also take another star-polarization. Take 
¢(Lo,O)EC"" (T*S I) such that ¢*Lo = O. This polarization 
is absent in the geometric quantization approach. Here ¢ 
takes the form 

¢(Lo,O) = [T dt 'II (t)cos2 t + 0 e+ 12L..sin(0 + 1)12 
o 4 

= ~a 17" (L )einO 
~ n nO' 

n 
(4.55) 

where the 17"n (Lo) are the eigenprojectors introduced in Eq. 
(4.30) and an is the wave function in momentum represen­
tation: 

( 4.56) 

The action of operators Lo, C, S is induced as before, this 
time for action on 'II (t) or equivalently on an . In particular, 
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(4.57) 
n 

with 

(4.58) 

It is seen therefore that via star-polarization we can 
"half' the phase space variables to obtain a Hilbert space 
formulation. We remark again that this procedure is not nec­
essary (although it might be practical) to find eigenprojec­
tors and spectrum. 

G. Weyl-Wigner correspondence on the cylinder 

In Ref. 9 Berezin calculated the Wigner-Weyl corre­
spondence in RZ. His starting point is the knowledge of the 
one-to-one relation between Heisenberg algebra elements 
acting on operators and their corresponding phase space 
function. His method in this case is as follows. If we associate 
!ECOO (T*S I) to the kernel of an operator (xiF Iy) = k(x,y), 
star-quantization tells us that we should also relate 

Lo*!++i~k(x,y), 
ax 

!*Lo++if!-k(x,y) , 
ay 

pz*!++sin x k(x,y), 

!*pz++siny k(x,y), 

Pi*!++COS x k(x,y), 

!*P1++Cosy k(x,y). 
Comparison with Eqs. (4.34) allows us to guess 

x = (0 - t)12, Y = (0 + t)12, 

so that 

k«O - t)12,(O + t)12) = F(t,O) , 

and Eq. (4.33) becomes 

(4.59) 

!(Lo'O) = [1T da(O ~aIFIO;a)cosZfe-i2LosinaI2, 
( 4.60) 

which is a Wigner application (operators to functions). Its 
inverse [given in the general case by (4.44)] is called a Weyl 
transformation. As a check consider the case F = etiIl, where 
A "'z 
H=!Lo' We have 

(
o+a

l 
iHIIO-a)_~ ina -/n'12 --- e -- - £..e e . 

2 2 n 

(4.61) 

Substituting in (4.60) and using the 21T periodicity we arrive 
at Eq. (4.27). That is). the phase space function correspond­
ing to the operator eiHl is precisely the star-exponential exp 
(tH). 

One can also verify that our path integral reproduces the 
standard result in this case. Recall that our construction is 
based on the conventional time slicing plus repeated use of 
the superposition principle. One would like to know, there­
fore, the short-time behavior of our matrix elements. For 
example consider 

G(x,at) = (xleiHAIIO). 

By (4.49) we set this equal to 
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r dp (1 + flz ~)1I2exp(atH)e-i2PlfiSinX12. 
JR 21Tfz 4 apz 

(4.62) 

In our formalism it easy to extract a short-term expansion. 
Up to terms of order (at)z we have 

( 
flz aZ)I/Z 

1 + --Z exp(atH) 
4 ap 

( 
fl2 a 2 ) IIZ( iat z) 

= 1+-- 1+-p 
4 apz fl 

1 iat( 1 Z flZ) 
= +~2P +g 

=exp{i!t(~pz+ ~Z)}, 
so that (4.62) becomes a Gaussian integral and we can write 
the final result as 

G(x,at) 

= ( __ I_) I12
exp{ - i (1 _ cos x) _ iat

flZ
} , (4.63) 

21Tiflat flat 8 

which is the correct short-time kernel for the free particle 
calculated directly in Ref. 15. 

H. The case of the universal cover 

One would like to see the modifications in our procedure 
when one considers E(2), the universal cover of E(2). Note 
that E(2) can be considered as the semidirect product of 
SO(2) (the real line) and RZ. One can take the same group 
parametrization as before and seek to find an appropriate 
star-exponential. Here exp must still satisfy the differential 
equation (4.14), which as we have seen, fixes the value of the 
Casimir. The general e(2)-invariant solution (any cover­
ing) can be written as 

exps- (a) = A (t)e - ifi(2L"sin liZ + x·P) 

+ B(t)ei/fi(2Losin 1/2 + x'P). (4.64 ) 

As in Refs. 6 and 7 we impose the following conditions on A 
andB: 

(i) Normalization: 

A(O) + B(O) = I, 
A'(O) =B'(O) =0' 

(ii) Symmetry: 

A( - t) = A(t), 

B( - t) = B(t). 

ForE(2) itselfwealsoimposeA(t) =B(t +21T) and 
A (t + 21T) = B(t). For E(2) we can relax this condition as 
we no longer demand periodicity since tER. We can intro­
duce arbitrary boundary conditions via a parameter yE (0,1 ) 
and modify our previous star-exponential: 

exps- (a,y) = eiyl {cosz fe -i/fi(2Losin 112 + x·P) 

+ sinz fei/fi(2LoSin tl2 + x'P)}. (4.65) 

The star-exponential of Lo is now 
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(4.66) 

If we look for a Fourier expansion of the form of Eq. 
(2.3) we find 

(4.67) 
n 

where lIn was given in Eq. (4.20). Remark that the spec­
trum is now shifted by y. Next, consider the adapted Fourier 
transform of E(2). That is, we consider an equation like 
(4.29) where the range of t is now R: 

f(Lo,P) = L dt L d2xf(t,x)expy(t,x). (4.68) 

This is once again an exampleofEq. (2.7). Hereexpy (t,x) is 
given by Eq. (4.65). Since the star-exponential now satisfies 

(4.69) 

we can decompose the integral t into a sum of integrals of 
length 21T. We have 

(21T 
f(Lo,P) = Jo dtA(t,P)expy(t,x). 

And on the orbit [compare with Eq. (4.33)] 

F(Lo,{J) = [1T dt A (t,e)eiyt cos2 ~12L,>sin t12. (4.70) 
o 4 

Here 

A(t,e) = I/21TnYF(t + 21Tn,e + 21Tn). (4.71) 

Note that F denotes the Fourier transform off on the x­
variables as given in Eq. (4.41). To arrive at (4.70) use has 
been made of the relation 

A(t + 21T,e + 21T) = e- 21TYA(t,e). 

Calculations now can be repeated as before. Polariza­
tions now give wave-functions with twisted boundary condi­
tions. For instance, 

\I1(e + 21T) = e'21TY\If(e). 

By the Weyl-Wigner correspondence one finds 

A(t,e) = (e; t IFl
e ~ t), 

so that A (t,e) gives t~e matrix elements in the cylinder. It is 
not hard to see that F(t,e) in Eq. (4.71) is the matrix ele­
ment in the plane. Equation (4.71) therefore justifies and 
generalizes the prescription of "sum over winding 
numbers.,,16 Equation (4.71) was also found in Ref. 17. 
Here it is a consequence of Eq. (4.68) and the group mani­
fold formulation of the adapted Fourier transform. 

V. DISCUSSION 

We have shown how star-products can be used to give a 
consistent quantum theory on the cylinder. As we have seen, 
in this approach it is not canonical variables but an algebra of 
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preferred observables that plays a prominent role. Quantiza­
tion is then carried solely in terms of phase space functions 
and the star-product. Since the star-product is associative, 
but in general noncommutative, the ring of functions with 
this product does not have an associated underlying mani­
fold. This is consistent with the uncertainty principle. Quan­
tization without polarizations might be useful in theories 
where halving the number of variables might break a sym­
metry such as gauge invariance. On the other hand, when 
polarizations are desired, they can be found by the method of 
star-polarization. Due to the stability of star-polarizations 
(see the end of Sec. II) polarizations might be found in this 
sense where they do not exist in the sense of geometric quan­
tization. 

The connection of star-products with path integrals 
while still at the formal level is a significant result. As in the 
case of the plane, a path integral in the cylinder is defined as 
an integral transform of the star-exponential of the Hamilto­
nian of interest. This mere fact does not make computations 
any easier since a direct calculation of the star-exponential of 
a given Hamiltonian is very involved.6 However, knowledge 
of the first terms of a star-exponential might help define the 
path integral measure. 

The e(2) Lie algebra has been shown to be relevant in 
the quantization of some field theory models. 8 Applications 
of star-products to quantum field theories are therefore im­
portant. Work in this regard is in progress. 
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APPENDIX A: THE INVERSE OF THE ADAPTED 
FOURIER TRANSFORM 

We want to show how the inverse of (4.33) is construct­
ed. We start by showing how (4.46) and (4.47) are inverse 
relations. Clearly the dependence on e will not pose a prob­
lem. It is enough to prove the following. 

Proposition: Let u(p)EL 2(R) such that 

(Yu)(x) = Lu(p)e-iPxdP=O for Ixl>2. (AI) 

Then the inverse of the transform 

u(p) = f:1T dtu(t)er2psint12 

IS 

u(t) = {dP (1 +~~)1/2u(p)e-12Psint/2. 
JR21T 4 Jp2 

Proof By direct verification. On one side, 
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J: 17 dt u(t)e,2pSin 1/2 

=Il7 dt{ {dq (1 +~ a:)1I2U(q)e-t2qSinI/2} 
-17 JR21T 4 aq 

X e,2p sin 1/2 

= Il7 ~ COS ~ { dq u(q)e-,2qsin 1/2et2psin 112. 
- 17 21T 2 JR 

Letting x = 2 sin t 12, 

I2 dx { dq u(q)eiqx,iPX 
-221TJR 

J2 dx . 
= -(Yu) (x)e'PX 

-221T 

= { dx (Yu)(x)eipx = u(p). 
JR21T 

On the other side, 

L dP( 1 + ! :p:Y/2u(p)e-t2PSinI/2 

= L dP(1 + ! :p:Y
/2

{J:17 dxu(x)e-,2Psinx12} 

X e - t2p sin 112 

= ( dPIl7 
dxu(x)lcos~le-t2P(SinSI2-SinI/2) 

JR -17 2 

= ITr dx U(X) IcoS ~18(2sin ~ - 2 sin ~). 
-Tr 2 2 2 

In this interval, the delta function picks up only one point: 

J: Tr dx u(x)8(x - t) = u(t). 

This finishes the proof. In the general case 

/(Lo,(J) = [17 dt F(t,8)cos2 ~'2L"Sin 1/2 
o 4 

and it cannot be put in the form (4.46). We can decompose/ 
however, into 

g(Lo,8) = Hf(Lo,8) + /( - Lo,(J + 21T)}, 

h(Lo,8) = Hf(Lo,8) - /( - Lo + 21T)} 

And wecanputg(Lo,{;1) an~h(Lo,{;1) in~theform (4.46) so 
we can find their inverse G(t,8) and H(t,8). It is easy to 
show that 

A A A 

F(t,8) = G(t,8) + H(t,8), (A2) 

since 

G(t,8) = dplcos _lg(p,8)e-'2PSm 1/2 A 1 t . 
R 2 

and 

H(t,8) = L dPsgn(cos ~)h(p,8)e-t2PSinl12. 

Equation (A2) readily gives Eq. (4.44). It is interesting to 
consider the case of functions of Lo only. From Eq. (4.33) 
we have that such functions are expressed as 
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/(Lo) = [17 dtj(t)COs21-e,2L"Sin 1/2, 

withj(t + 21T) = j(t). It is not hard to show that this im­
plies 

/(Lo) = fl7 dtj(t)exp(tLo), 

with exp(tLo) given by Eq. (4.16). Expansion ofexp(tLo) 
into eigenprojectors [Eq. (4.19)] leads to a Neumann se­
ries l8 

/(Lo) = Lan lIn (Lo), 
n 

where 

an = fTr dtj(t)einl. 

Recall that 

lIn = (1 + (nlp)J2n (2Lo), 

so that we will have expansion of the type 
00 

/(Lo) = L bJ2n (2Lo), / even, 
n=O 

00 

/(Lo) = L C2n + IJ2n + I ( 2Lo), / odd 
n=O 

In Ref. 19 we find (A 1) as a necessary and sufficient condi­
tion for convergence of such a series. 

APPENDIX B: STAR-EXPONENTIAL OF H=l Lo2 

One can give another derivation for the star-exponential 
of the Hamiltonian of the free particle. We want to calculate 
the sum 

t/J(Lo,t) = f (~)nJ,(H*)n 
n = 0 1ft n. 

(Bl ) 

for H = !L02. Note that t/J must satisfy 

i~(Lo,t) = H*t/J(Lo,t)· 
at 

(B2) 

Because t/J is an even function of Lo, we can use (4.46) to 
express it as 

t/J(Lo,t) =~[17 daF(a)e,2L"Sina12. (B3) 
2 0 

Using (4.34) we have 

1[17 ft2 a 2 
H*t/J(Lo t) = - da - ---

, 2 0 2 aa2 

X F( a ) e,2L" sin a12. (B4) 

Integrating by parts and redefining t/J so that it depends on 
x = 2LoIft, we can induce the action of H as a differential 
operator: 

H*t/J =-- x 2 1 +- +x- t/J. Ift2{ ( a
2

) a} 
24 ax2 ax 

(B5) 

Once we recognize this operator as Bessel's differential oper­
ator, separation of variables permits us to write the solution 
to (B2) as a linear superposition of independent functions: 
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¢(Lo,t) = kaJ2n ( 2~o )e-in'IUil. 

The condition exp Htl I = 0 = 1 tells us that an should be 
equal to the Neumann symbol En: 

En =g n=O, 
n =1=0. 

Therefore 

exp(tH) = kEnJ2n ( 2~o )e- in
'l2lil, 

which can be easily be shown to be equivalent to the form 
(4.25 ). 
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Exact solutions of Einstein's equations for a scalar field with a potential V( <1» 
= Vo cos2

(l - nl (<I>lf(n» (0 < n < 1) are presented describing the gravitational field ofthick, 
plane symmetric domain walls. The scalar field has a time-independent kinklike distribution, 
whereas the metric depends on a time coordinate. The metric is conformally flat and the 
hypersurfaces parallel to the wall (z = const) are three-dimensional de-Sitter spaces. A 
particle horizon exists on which the metric becomes Minkowski space. It is shown that the 
gravitational field experienced by a test particle is repulsive. 

I. INTRODUCTION 

The renewed interest in the cosmological significance of 
domain walls is mainly due to a proposal for a new scenario 
of galaxy formation by Hill, Schramm, and Fry. 1 In the Hill, 
Schramm, and Fry scenario, the seeds for galaxies are the 
topological defects (domain walls) produced during a phase 
transition after the time of recombination of matter and radi­
ation. The phase transition is triggered by the breaking of a 
descrete symmetry of a weakly coupled scalar field of pseu­
do-Goldstone bosons. The mass of the scalar field m<f> is 
assumed to be in a range so that the spatial scale of the topo­
logical defects l/m<f> lies in the range of Mpc. Such light, 
thick domain walls are assumed to provide the gravitational 
field necessary for the clustering of dark matter and baryons 
after recombination. Thus the scenario alleviates the prob­
lem of too short time scales in hot dark matter and pure 
baryonic scenarios that do not allow enough clustering to 
take place between recombination time and the present. This 
scenario also avoids the severe restrictions on the amplitude 
of the density inhomogeneities imposed on other scenarios of 
galaxy formation by the high isotropy of the microwave 
background because clustering of matter takes place entirely 
after recombination. Since the domain walls associated with 
such a late-time phase transition are light compared to wall­
like topological defects associated with a GUT phase transi­
tion, they do not dominate the energy density of the universe, 
as is the case for GUT domain walls.2 

Since the scenario for galaxy formation based on a late­
time phase transition has been proposed very recently, al­
most no details have been worked out up to the present. In 
Ref. 3 an attempt has been made to determine approximately 
the gravitational field of thick, plane symmetric domain 
walls and in Ref. 4 the stability of infinitely thin, spherical 
walls has been investigated. The numerical simulations in 
Refs. 5 and 6 deal with the dynamics and the interaction of 
thick domain walls on a background metric that is not affect­
ed by the gravitational field of the walls. A rough estimate of 
how matter accretes onto topological defects is contained in 
Ref. 7 and in Ref. 8 the cosmological consequences of light 
domain walls are discussed. The gravitational field of infi­
nitely thin walls has been calculated by Vilenkin9

-
11 (see 

also Ref. 12). 
The purpose of this paper is to study the gravitational 

field of plane symmetric thick domain walls in the frame­
work of general relativity. Since the thickness of the wall 
l/m<f> is not small compared to a typical curvature radius, 
the thin wall approximation of Refs. 9 and 12 does not apply. 

In Sec. II a metric for a plane symmetric domain wall 
is derived. We find a solution for a potential 
V(<I» = Vo cos2

(l-nl (<I>lf(n» (Vo,n = const,O<n < 1) 
with the usual kinklike distribution of <I> whose metric is 
conformally flat and where the hypersurfaces z = const (z is 
a coordiante running perpendicular to the wall) are three­
dimensional de-Sitter spaces. Due to the conformal flatness 
and a vanishing energy momentum tensor at Izl-+ 00, the 
space-time becomes Minkowski space for Izl- 00. A particle 
horizon exists in all directions: In the planes parallel to the 
wall we have the usual de-Sitter horizon and in the z direc­
tion there is a horizon whose distance depends on the param­
eters nand Vo. In Sec. III the geodesic equations for a test 
particle moving in the gravitational field of these domain 
walls are investigated. It is shown that the gravitational field 
is repulsive. 

A thick domain wall can be viewed as a solitonlike solu­
tion of the scalar field equation coupled to gravity. In order 
to determine the gravitational field one has to solve Ein­
stein's equation 

G,.,v = 8trGT,.,v ( 1.1 ) 

with an energy momentum tensor T,.,v describing a scalar 
field <I> with self-interactions contained in a potential V( <1»: 

T,.,v = a,., <I> av <I> - g,.,v(!au<l> a U<l> - V( <1»). (1.2) 

In the following we will derive solutions of ( 1.1) and (1.2) 
for a potential V( <1»: 

V= Vocos2(l-nl(<I>lf(n» (1.3) 

(n, Vo = oonst,O < n < 1) which is similar to that proposed in 
Ref. 1 as the potential for weakly interacting pseudo-Gold­
stone hosons. Since a domain wall is essentially a one-dimen­
sional planar object we seek solutions to (1.1), (1.2), and 
( 1.3) with a three-dimensional symmetry group: Two com­
muting Killing vectors describing translational invariance in 
the planes parallel to the wall and a third Killing vector 
related to a rotational symmetry about the axis perpendicu­
lar to the wall. In addition, we assume that the scalar field is 
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time independent in some coordinate system, whereas the 
metric is allowed to depend on time. 

II. PLANE SYMMETRIC DOMAIN WALLS 

The general metric for a plane symmetric space-time 
can be parametrized as follows: 13 

ds2 = ev (z.l)dt 2 _ £I(z.l)dr _ er/J(Z.I) (dx2 + dy2). 

This metric admits three Killing vectors: 

(2.1 ) 

ax' ay , xay - yax' (2.2) 

Now we assume that the scalar field does not depend on the 
time coordinate t, i.e., we have <I» = <I»(z). For such a time 
independent scalar field the components of the energy mo­
mentum tensor (1.2) are 

T: = T~ = T~ = !e- A<I»,2 + V(<I») =p, 

T~ = _!e- A<I»,2+ V(<I») = -po (2.3) 

But we do not assume that the metric is independent of t, 
which clearly imposes some restrictions on the metric vari­
ables v, A, t/J. We proceed similar to Ref. 3 and consider first 
the scalar field equation <1»;1';1' + dV /d<l» = 0: 

<I»"+<I»,(t/J'+~(V'_A'»)=£IdV(<I», (2.4) 
2 d<l> 

"prime" and "dot" denote derivatives with respect to z and t, 
respectively. Since <i> = 0, the coefficient of the <1»' term in 
(2.4) and the coefficient ofthe potential term must be func­
tions of z only: 

A=A(z), a,(t/J'+!(v'-A'»=O. (2.5) 

Moreover, <i> = 0 implies 

G~ = 0=}2ip' - v'ip + ipt/J' = 0, (2.6) 

which together with (2.5) puts the line element (2.1) in the 
following form: 

d~ =A(z) [dt 2 - dr - b(t)(dx2 + dy2)]. (2.7) 

The freedom to transform the coordinates t .... t = g(t) and 
z .... z = h(z) has been used to eliminate the time dependence 
of the g" component of the metric tensor and to set 
gzz = -g" = -A. The three functions A(z), b(t), and 
<I»(z) are determined by the remaining three Einstein equa­
tions: 

G: - G~ = O=}bb - b2 = 0, (2.8) 

A" 3 A,2 c2 1 
G~ - G~ = --+----= 81TG-<I>,2 

A2 2 A 3 2A A' 
(2.9) 

A" c2 

G: + G~ = --2 +-= 161TGV(<I», 
A A 

(2.10) 

where c is the integration constant in the nontrivial solution 
of (2.8): 

b = eel, (2.11 ) 

where (2.9) and (2.10) are the two equations that determine 
A(z) and <I»(z) for a given V(<I»). Starting with the ansatz 
thatA(z) be proportional to some power ofcosh(z), we find 
a solution to Eqs. (2.9) and (2.10) with a scalar field poten­
tial given by ( 1.3) whose energy momentum tensor vanishes 
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for Izl ..... t:t:J. Note that all the coordinates can be rescaled so 
that alltrivial integration constants, and also the constant c 
in (2.11), are removed from the solution. Then the line ele­
ment and the scalar field are given by 

d~ = _1_ 1 [dt 2 _ n2dr _ e21 (dx2 + dy2)], 
L 2 cosh2n(z) 

<I> = f arcsin [tanh (z) ], 

V( <1» = Vo cos2
(1 - n) (<I>/j) , 

f= , Vo L , _[nO-n)]1I2 2n+12 
41TG (81TG)n 

(2.12) 

(2.13 ) 

(2.14 ) 

(2.15) 

where nand L are two nontrivial constants in the solution. 
Here, n is dimensionless and determines the energy scale f of 
the scalar field and the power ofthe cosine in V( <1»; L has 
the dimension of a mass and determines the amplitude Vo of 
the scalar field potential. The energy density p, the pressure p 
perpendicular to the wall [see (2.3) ] and Vas a function of z 
are given by 

n+2 
p= Vo-------, (2.16) 

2n + 1 cosh2 (1 - n)(z) 

3n 1 
p= - Vo-- , (2.17) 

2n + 1 cosh2 (1 - n) (z) 

1 
V = Vo (2.18) 

cosh2 ( 1- n) (z) 

The scalar field <I» has a kinklike distribution that becomes 
<1» .... ( 1Tj) /2 for z .... + t:t:J and <1» .... - (1Tj) /2 for z .... - t:t:J. 

The energy density p and the potential energy of the field V 
both have a maximum at z = 0 and vanish for Izl .... t:t:J. Such 
a scalar field distribution and energy momentum tensor 
characterize a domain wall. The pressure in the (x,y) planes 
is clearly isotropic and equal to - p. The pressure p perpen­
dicular to the wall is negative for any choice of the param­
eters and has a minimum at z = O. Note also that the poten­
tial probes only a half-period of the cosine in (2.14). 

The hypersurfaces z = const are obviously three-dimen­
sional de-Sitter spaces. It is easy to see that the metric (2.12) 
is conformally flat. A coordinate transformation 

t= -e-Icosh(nz), z=e-Isinh(nz), 

casts the line element (2.12) into the form 

r 
d~= ~ A 

L 2 [(t - Z) lin + (t + Z) I/npn 

X [dt 2 - dP - dx2 - dy2]. 

(2.19) 

(2.20) 

The conformal flatness of this thick wall metric is a property 
shared by the metric of an infinitely thin wall.9 The energy 
momentum tensor vanishes for Izl .... t:t:J. Since the only con­
formally flat vacuum space-time is Minkowski space the 
metric becomes flat space far away from the wall Izl .... t:t:J • 

For Izl .... t:t:J the line element in (t,z) coordinates becomes 

d 2 1 1 [dA 

2 d'<>2 d 2 d 2 S .... -2 A A 2 t - z - X - y], 
L (t-z) 

(2.21) 

whose Riemann tensor vanishes. 
An interesting property of this metric for a thick domain 
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wall is the existence of a particle horizon in every direction. 
Since the hypersurfaces z = const are de-Sitter spaces we 
have the usual de-Sitter horizon in the x and y direction. This 
will be demonstrated in more detail in the context of a dis­
cussion of the null geodesics in Sec. III, see (3.10) and 
(3.11). There is also a horizon in the z direction since the 
proper distance S H between z = 0, the center of the wall, and 
the Minkowski vacuum at z -- 00 , measured along a spacelike 
curve running perpendicular to the wall (t,x,y = const), is 
finite: 

n roo 1 dz=.!.2n[r(1+nI2)]2 
SH = L Jo coshn(z) L r(1 + n) 

(2.22) 

r(x) is the standard Gamma function. This means that a 
particle moving in the gravitational field of the wall can at 
most travel a distance sHin the z direction from the center of 
the wall. Here, S H is always of the order 11 L and attains the 
following values for the two extremal values of n: 

SH = lIL, for n --0, 

SH = (1r/2)( lIL), for n-- 1. (2.23) 

Finally, we determine the energy density per surface ele­
ment q of the domain wall. We define q as the integral of p 
over the element of proper length along the z axis: 

ISII n I+ 00 1 
q= P ds = - p dz 

-SII L -00 coshn(z) 

= L (n + 2) 21 _ n [r (1 - n12) ] 2 

81TG r(2 - n) 
(2.24) 

This surface energy density is always of the order of L IG 
because the dependence on n is very weak: 

q= (1/21T)(LIG), for n--O, 

q= (3/8)(LIG), for n--1. (2.25) 

III. GEODESICS 

In this section we discuss the properties of the gravita­
tional field of the domain wall configuration set forth in the 
last section by studying the geodesic equations for test parti­
cles. 

For the metric (2.12) the first integrals of the geodesic 
equations for a particle on a trajectory 
xiJ. = (t( r) ,z( r) ,x ( r) ,y( r» are (henceforth, "dot" denotes 
a derivative with respect to the affine parameter r): 

x = ue- 2t(1IA), y = we- 2t( lIA), (3.1) 

[2 = (1IA 2) [E2 + (u2 + w2)e- 2t ], (3.2) 

r = (lIn2A)[E 2IA - ,u2], (3.3) 

A (z) = (lIL 2) [lIcosh2n(z)], (3.4 ) 

where E, u, ware integration constants and,u2 = 0,1 for light 
rays and for particles with nonzero mass, respectively. Due 
to the rotational symmetry about thezaxis [see (2.2)] x( r) 
and y( r) have the same functional dependence on t,z. The 
acceleration in the z direction is given by 
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.. 2 h() 1 [E2 1 2] z=-tan z - ---,u . 
n A A 2 

(3.5) 

Since E 21 A - ,u2 must be positive, the term in brackets in 
(3.5) is also positive. Thus, the acceleration is positive for 
z> 0 and negative for z < 0, meaning that the gravitational 
field (2.12) is repulsive in the z direction. The acceleration 
increases with increasing distance from the wall and be­
comes infinite on the horizon Izl-- 00 • Repulsive gravitation­
al fields that are related to the negative stress components in 
the energy momentum tensor are also known to exist for 
infinitely thin domain walls. 12 

It is possible to integrate (3.1) once more and express 
x,y as a function of t instead of r: 

1 1 
- (x -xo) = - (y- Yo) 
u w 

1 ~E2 + (u2 + w2)e-2t, 
u2 + w2 

for ,u2 = 0,1, (3.6) 

xo,Yo = const are some initial positions of the particle. In 
(3.6) the positive root of [2 in (3.2) was used. In general, it is 
not possible to determine the relation between t and r since 
(3.2) cannot be integrated analytically, both for,u2 = 1 and 
,u2 = O. For light rays (,u2 = 0) one can integrate 
dzl dt = il [ and determine z(t) : 

coth(n(z - zo» = ± [1 + (1IE 2)(U2 + w2)e - 2t] 112, 

for ,u2=0; U2+W2#0, (3.7) 

Zo = const is again an initial value. For a photon with zero 
momentum in the x and y directions (u = w = 0) the inte­
gration yields 

z-zo=±(lIn)t, for,u2=0;u=w=0. (3.8) 

The two signs in (3.7) and (3.8) are due to the two roots ofr 
in (3.3). Thus all null geodesics of the metric (2.12) are 
given by (3.6), (3.7), and (3.8). This result could also have 
been inferred from the fact that the metric is conformally fiat 
and the coordinate transformation (2.19) which transforms 
(2.12) into (2.20). 

Next, we want to discuss the geometric shape of the 
particle trajectories in a space like hypersurface for ,u2 = O. 
Since, by means of a rotation of the coordinates in the (x,y) 
plane, one can always orientate the coordinate system such 
that the y component of the position vector of the particle 
coincides with y = 0, we henceforth assume w = O¢:}y = 0, 
without loss of generality. Therefore, the motion of the parti­
cle is entirely confined to the (x,z) plane. By eliminating t 
from (3.6) and (3.7) one has 

(x - xo)(uIE) ± coth(n(z - zo» = 0, for ,u2 = 0; u#O. 
(3.9) 

As z -- zo, x becomes infinite and for Izl-- 00 the x coordinate 
approaches a constant value Ix - xol-- IE lui. Thus a pho­
ton starting at the horizon Izl-- 00 with nonvanishing mo­
mentum in the x direction is always bent away from the wall 
and reaches the plane z - Zo = 0 at Ix 1-- 00. Vice versa, pho­
tons emerging from the center of the wall are forced onto 
trajectories parallel to the z axis as they approach the hori-
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zon. The location where their trajectories intersect the hori­
zon orthogonally is determined by the ratio E lu. The inter­
esting feature is that photons with nonzero momentum in 
the x direction are either confined to the region z - Zo > 0 or 
to the region z - Zo < 0, corresponding to the two branches 
of the coth function in (3.7) and (3.9). Since the particles 
are drifting toward Ixl--+ 00, as they approach the plane 
z - Zo = 0, it is not possible for them to cross z - Zo = 0 con­
tinuously. Only photons moving strictly perpendicular to 
the wall (u = w = 0) can traverse the entire horizon 
between Z--+ + 00 and Z--+ - 00. But these trajectories or­
thogonal to the wall are unstable in the sense that the slight­
est initial momentum in the x direction increases and there­
fore prevents the particle from crossing the plane z - Zo = o. 

Next, we want to show that the proper distance that 
corresponds to an infinite value of the x coordinate is finite. 
The proper distance measured along the x axis at a constant 
z=zois 

s = (1IL) [1Icoshn(zo) ]e'(x - xo)· (3.10) 

According to (3.6), Ixl becomesinfinitefort--+ - 00. There­
fore, as the particle moves toward z --+ zo, Ix 1--+ 00 , the proper 
distance in the x direction between Xo and x --+ 00 becomes 

s--+ (11 L) [l/coshn(zo) ]. (3.11 ) 

Note that this holds both for photons and massive particles 
since (3.6) is valid for ,u2 = 0 and,u2 = 1. (3.11) is nothing 
else than the usual de-Sitter horizon in the z = const hyper­
surfaces. Since we know that the maximum proper distance a 
particle can travel in the z direction is also finite (2.22), there 
exists a horizon in every direction which is of the order of 
1IL. 

Although it is not possible to integrate the geodesic 
equations for massive particles (,u2 = 1) completely one can 
determine the qualitative behavior from (3.2), (3.3), and 
(3.6). Assuming, without loss of generality, W = 0, the path 
of a massive particle in the (x,z) plane is given by 

f' ____ d_z' ____ + ~ arcoth['!!'" (x - xo)] = 0, 
L.,[I-(1IE 2)A(z,)]I12- n E 

for ,u2 = 1, u#O, (3.12) 

where A (z) is given by (3.4). For Izl--+ 00, A (z) goes to zero 
and the integral in (3.12) is ex:z. Therefore, far away from 
the wall and close to the horizon the trajectories of massive 
particles are similar to the paths of photons (3.9). The inte­
grand in (3.12) is everywhere finite only if (EL)2> 1. For 
(EL)2<;1 the integrand is singular at Iz~ = ZT where r be­
comes zero (3.3) and therefore the lower limit in the integral 
must be IZol >zp In the case (EL)2 > 1 for zclose to zero the 
integrand in (3.12) becomes almost a constant and the inte­
gral is again approximately a linear function of z implying 
that close to the wall the shape of the trajectories resembles 
(3.9). Paths of particles with zero momentum in thex direc­
tion, u = 0, are determined by 

f' dz' +~t=O 
Jz" [1- (1IE 2 )A(z')]I12 - n ' 

for ,u2 = 1, u = o. (3.13) 
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IV. CONCLUDING REMARKS 

To summarize, we have found solutions of the coupled 
Einstein-scalar field equations describing a thick domain 
wall with kinklike scalar field distribution and vanishing en­
ergy momentum tensor far away from the center of the wall. 
The metric is conformally flat and the hypersurfaces 
z = const are three-dimensional de-Sitter spaces. For all 
combinations of the parameters a particle horizon exists on 
which the space-time becomes Minkowski space. The gravi­
tational field of the domain wall has been shown to be repul­
sive. Massive and massless test particles coming from the 
center of the wall are moving on trajectories which become 
orthogonal to the wall as they approach the horizon. Parti­
cles moving toward the wall and with nonzero momentum 
components parallel to the wall approach paths parallel to 
the wall as they come close to the center and are therefore 
prevented from crossing the wall and forced toward the de­
Sitter horizon. Only particles moving strictly orthogonal to 
the wall can cross the wall and traverse the entire horizon. 
The horizons in all directions are of the order of 11 L. 

An important question we have not addressed in this 
paper is whether these scalar field configurations are stable. 
The 1-0, planar kink solution in Minkowski space is known 
to be stable with respect to small perturbations due to Der­
rick's theorem. 14 Thus, there is at least a chance that the 
domain walls discussed in this paper are stable. However, for 
the application of these scalar fields in the context of a cos­
mological scenario of structure formation the stability is not 
of crucial importance because the domain walls are sup­
posed to provide only the seeds for baryon inhomogeneities. 
Such a scenario could work if the domain walls survive a 
certain period of time during which enough baryonic matter 
accretes in the gravitational field of the walls to account for 
the observed masses of galaxies and clusters. Therefore, the 
scenario is only viable if the time scale on which the scalar 
fields decay is equal or larger than the typical time scale of 
accretion. But it is not necessary that the domain walls are 
stable. 

To emulate the parameters in the scalar field potential 
(1.3) of the scenario proposed in Ref. 1, one has to choose 
n::::: 10- 8 for an energy scale/of the scalar field/::::: lOIS GeV 
[see (2.15)]. In principle, there are two values of n for a 
given f But the second one, which is close to 1 for 
/ ~ m pi == 11 [G, would yield a potential V( <1» and an energy 
momentum tensor that are almost constant [see (2.16)­
(2.18) ]. For n close to zero the potential is approximately 
Vex: cos2 (<I>I j). The other free parameter, Vo, corresponds to 
a nonzero neutrino mass mv in Ref. 1: Vo:::::m~, with 
mv::::: 10 - 2 eV. This gives a value for the mass scale 
L:::::,fiim~/mpl::::: 10 - 45 GeV. Note that for n ~ 1 the density 
p and V are of the same order of magnitude [see (2.16)­
(2.18) ] whereas the pressure Ip I perpendicular to the wall is 
by a factor of n smaller than p. 
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r 3 XR space-times with a single global spatial Killing vector can be foliated such that the trace 
of the two-dimensional metric momentum tensor is a constant over the hypersurfaces. This is 
analogous to constant mean curvature slicing, but is somewhat more algebraically natural in 
the case with symmetry. Here, the question is addressed of whether Einstein solutions foliated 
in such a manner exist where the trace of the extrinsic curvature is not of consistent sign over 
the surface. The relationship between such behavior and the possibility of singularities local in 
the quotient space of the symmetry is considered. 

I. INTRODUCTION 

IT is well known that cosmological space-times with 
topology r 3 X R may be foliated with constant mean curva­
ture (CMC) hypersurfaces. Such surfaces are defined by the 
requirement that the four-dimensional divergence of the unit 
normal vector, or equivalently the trace of the extrinsic cur­
vature K, is a constant. The observed singularity avoidance 
behavior offamilies of these surfaces makes them suitable as 
a time coordinate. 

The time rate of change of the volume of the hypersur­
faces is related to suitably measured spatial integral of K. In 
an expanding space-time, for example, this average of K is 
positive. 

In the case of such space-times with a single spatial Kill­
ing vector, so called 2 + 1 + 1 space-times, a natural alter­
native presents itself. The action takes the form 

S = f dt d 2x {1T"bgab,1 + ea/3a,1 + P<P,1 

- kif - J.r it - /30<a} (1 ) 

and the slicing condition 

(2) 

is found to be effective in both simplifying the dynamics and 
evolving the field equations (specifying a consistent global 
Cauchy problem). In these expressions the roman indices 
range over the quotient space of the symmetry, a two-dimen­
sional manifold. We can also calculate K for the congruence 
defined by this prescription, and it appears that they are of 
consistent sign in an average sense. It does not seem possible 
for expansion in the direction of symmetry to dominate ex­
pansion of the two-dimensional surfaces in such a way that a 
space-time with expanding areas could be decreasing in vol­
ume. There does not seem to be an obvious problem if such 
behavior is possible, but it has not been observed in numeri­
cal examples and we conjecture that the expansions are al­
ways globally consistent. 

However, it may be possible for K to be locally of differ­
ent sign than its average in such foliated space-times. The 
situation could exist in which an expanding space-time con-

a) Present address: Departments of Mathematics and Astronomy, Univ. of 
Illinois at Urbana-Champaign, 5600 Beckman Inst., 405 N. Mathews St. 
Urbana, IL 61801. 

tains a local region that is collapsing. The resolution of this 
question is dependent in a fairly interesting way on the non­
linearity of the Hamiltonian constraint. We address the 
question by numerical means, which appears to be the on~y 
means by which it can be done, and establish that such be­
havior is indeed possible. Both the local question and the 
global conjecture are dependent on the interplay between the 
Einstein equations, the foliation conditions, and symmetry. 

We then provide some evidence to indicate that the be­
havior is not generic, that if a hypersurface is initialized with 
such a local collapsing patch it leaves this state and the evo­
lution is not characterized thereafter by a magnification of 
the local inconsistency in the signs of rand K. The question 
is of interest in that such local patches of inconsistency are 
likely candidates to form local (in the quotient space) singu­
larities in expanding space-times. It is not known if the Ein­
stein equations allow such singularities. 

It should be emphasized that in this paper we use K to 
refer to the divergence of the normal to the surfaces defined 
by the r = r(t) condition, not a CMC foliation. There may 
be differences in sign convention as well. Here, K is defined 
by 

K= - n~a (3) 

where na is the unit normal. 

II. FORMALISM 

Our description of the formalism will be necessarily 
brief and largely incomplete. The construction is due to 
Moncrief, 1 and is related to the formalism underlying the 
solution generating methods of Geroch.2.3 Additional de­
tails specific to the torus can also be found elsewhere.4 Al­
lowing the Killing vector to play the role of a Kaluza-Klein 
"extra" dimension, one can cast the four-dimensional Ein­
stein equations in a form equivalent to three-dimensional 
gravitation coupled to a scalar and vector field. In the five­
dimensioal theory this vector field would obey the Maxwell 
equations and have two degrees offreedom, but in the lower­
dimensional case this is reduced to one. Gravitation in three 
dimensions is not a dynamical theory (it has no degrees of 
freedom), and the full two degrees of freedom of the four­
dimensional Einstein equations are represented by the dy-
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namics of the scalar and vector fields. 
The metric takes the form 

ds2 = e - 2<1> da2 + e2<1>{dx3 + {3a dxa + {3o dt}2, (4) 

where 

da2 = - N 2 dt 2 + gab (dxa + Na dt) (dxb + N b dt). 

(5) 

All variables are functions of t, Xl, and x2 only, as x 3 has 
been singled out as the direction of symmetry. Terms de­
noted by a tilde are two-dimensional quantities, and the let­
ters (a,b,c, ... ) will be used for their indices. Four-dimension­
al quantities will have their indices denoted by lower case 
Greek letters, while (i,j,k, ... ) will be used for three-dimen­
sional quantities. 

Parametrized in this way, the Einstein action is 

S = I dt d 2X{lTabgab., + ea{3a.1 + PCP" 

- NH - NaH - aoea } a PI ,0 , 

where 

(6) 

H = _l_{rr"b1T _ (~)2 + ~p2 + ~ e- 4"'g eaeb} Jg ab a 8 2 ab 

+ Jg{ _ (2) R + 2g"bCP,aCP,b 

+ ! e4<1>g"cghd({3a,b - {3b,a) ({3c,d - {3d,C)} , (7) 

Ha = - 2~;b + pcp,a + eb({3b,a - {3a,b)' 

The dynamics of the equations are represented by the 
scalar field cP and the vector field {3, and these and their 
momenta are the only fields that are explicitly evolved. Ad­
ditional quantities are determined by imposing coordinate 
conditions and solving the Hamiltonian and momentum 
constraints, all of which can be cast as elliptic equations (and 
except for the Hamiltonian constraint, linear elliptic equa­
tions). 

The metric gab is a metric on the two-torus. Since all 
such metrics are conformal to a flat metric, the metric can be 
put in this form by making use of the coordinate freedom to 
impose 

gab = e2%b (t), det(f) = 1. (8) 

This condition leads to elliptic equations determining the 
shift functions. . 

One of the constraints involving the "electric" field, 

can be formalized away by 

ea 
= €"bW,b' 

(9) 

( 10) 

which defines a twist potential w. The momentum conjugate 
to this field is €"b{3c,d' which we denote by r. The evolution 
equations for the dynamical fields (cp,p) and (w,r) will not 
be reproduced here, nor will those of the flat metric and its 
"momentum. " 

In addition to prescribing how the coordinates thread 
themselves through the successive hypersurfaces (done by 
preserving the flatness of the metricfab)' a coordinate condi­
tion must be imposed to specify the local proper distance 
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between successive slices. We choose a time slicing condition 
that is a two-dimensional variant of the familiar CMC condi­
tion. As mentioned earlier, this is done by imposing the re­
quirement 

(11) 

The expansion of the normal to the two-dimensional sur­
faces (the symmetry direction has been factored out) is a 
constant over the surface. Here, r(t) is an arbitrary mono­
tonic function, and the requirement that the form of this 
equation be invariant in time determines the lapse. 

Of central importance to the current discussion is the 
Hamiltonian constraint, which determines the conformal 
factor factor A. It is equivalent to the nonlinear elliptic equa­
tion 

aA. + a + Pe - 2A - Qe2A = 0, 

where 

a=/abCP,aCP,a + !e-4",/abw,aW,b' 

(12) 

(13) 

and ~ is related to the two-dimensional momentum tensor, 
This quantity must be determined beforehand by solving the 
momentum constraints. However, both constraints can be 
solved without knowledge of the lapse or shift functions. 4 

Application of the minimum principle allows one to define a 
bounding function 

(14) 

(15) 

where the minimum and maximum are taken over the two­
torus. 

The time derivative of the slicing condition results in a 
linear elliptic equation for the field N, which is related to the 
true lapse Ne - "'. In terms of the definitions for the Hamilto­
nian constraint above, this elliptic equation takes the form 

!::..N - 2N(Pe- 2A + Qe2A ) = _ e2A dr . (16) 
dt 

We will refer to this as the lapse equation, and make use of it 
later. It is clear from this equation that N is of the same sign 
everywhere and does not vanish anywhere on the hypersur­
face. The sign of Nand dr/dt are the same. 

III. AN AREA "THEOREM" 

A consequence of the Hamiltonian constraint and the 
lapse equation is that an upper bound exists on the pseudo­
lapse 

(17) 

No positive lower bound appears to exist. If a lower bound 
existed we could make the rather strong statement that in 
polarized space-times (w = r = 0) either (1) the two-di­
mensioal slicing condition does not generally avoid singular­
ities; or (2) singularities are excluded by the symmetry. The 
true lapse is Ne - "', which could become arbitrarily small 
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because of the effect of t/J. However, the polarized field equa­
tions possess an exact symmetry under reversal of the sign of 
t/J. As a consequence, if a solution existed where the lapse 
tended to zero in the vicinity of a local singularity, another 
solution could be found where the lapse was correspondingly 
large. 

Numerical experiments indicate that it is difficult to 
force the pseudolapse to become small (relative to the upper 
bound), and that solutions tend to "bounce" away from 
such states. Therefore, we have pursued the matter further. 
Defining 

(18) 

we can demonstrate the following result. 
If the pseudolapse is less than a certain value v in a region 

of the hypersurface. the fractional area (with proper measure) 
of that region is less than or equal to the ratio vlL. 

The result follows from integral relationships generated 
from the Hamiltonian constraint and the lapse equation. 
Taking a linear combination of these gives 

I1N 2A e2A dr 
-=- + I1A + a - 2Qe = - -=- - . (19) 
N 2N dt 

We then integrate this equation over the two-dimensional 
spatial surfaces. Making use of the fact that 

J I1Nd2 - JrbN.oNb d 2 "0 
- X - - 2 x"" , N N 

(20) 

we arrive at 

(21) 

The equality holds for Kasner space-times. Using the upper 
bound we can put this in the form 

Of course the upper bound itself, a local condition, is much 
stronger than the left side of this expression. From the right­
hand inequality the area result immediately follows. 

This implies that the picture of black hole formation 
accompanied by an ever increasing region of vanishing lapse 
does not apply to these cosmological space-times with a glo­
bal Killing vector. As the lapse tends to zero, the region of 
space over which this happens tends to zero to proportion. 
The result is supportive of evidence provided elsewhere5 

that local singularities (in the quotient space of the symme­
try) are excluded. 

IV. THE EXPANSION 

The trace of the extrinsic curvature of the foliation can 
be calculated in a straightforward manner, with the result 

K = Te"'(l + pe - 2A 14T). (23) 

The quantity e2
'" is the distance around universe in the direc­

tion of symmetry. From the evolution equation for t/J, 

(t/J.t -N°t/J.o)IN=e- 2ApI4, (24) 

it is clear that the expansion is composed of contributions 
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from the rate of change in this distance and the two-dimen­
sional expansion T. 

From the evolution equation for the conformal factor A, 
the time derivative of the area of the quotient space can be 
found to be 

!!..A(t) = -JNTe2A d 2x. (25) 
dt 

There is no ambiguity of sign because the slicing is defined 
with respect to these surfaces. 

The situation is different for the full three-dimensional 
surfaces. Making use of the evolution equations for t/J and the 
conformal factor A, the volume rate of change of the spatial 
hypersurfaces can also be easily calculated: 

:t V(t) = - J d 3
xNe-"'(Te

2A + ~) 

-J (KNe-"')e2A -"'d 3x 

-J KT.t~(3)g d 3X , (26) 

where T is a local measure of the proper time, 
dT = Ne - '" dt. This is consistent with a well-known result, 
the "first variation formula.,,6.7 

We conjecture that the sign of (d 1 dt)A (t) is equal to 
that of (d Idt) V(t), but are unable to demonstrate this (per­
haps due to blindness). Solutions exist in which locally the 
integrands do not obey this requirement, as we will demon­
strate, so clearly a proof of the conjecture will involve the 
lapse condition as well as the Hamiltonian constraint. For 
example, showing that the integral of K is of definite sign 
would be insufficient. The measure for the volume result 
involves the pseudolapse, which, in principle, could be negli­
gible except where K is of the wrong sign. 

The question involves the nonlinearity of the Hamilto­
nian constraint, and from this constraint one can construct 
an integral expression analogous to the familiar exponent 
sum rules of Kasner space-times. The quantity p is the ca­
nonical momentum of the scalar t/J, and as such is free to be 
chosen arbitrarily negative as a specification of a Cauchy 
problem. The constraint can counterbalance the effect by 
leading to a solution for A such that pe - 2A is bounded in an 
average sense. This is indeed the behavior of the system. 
Multiplying the Hamiltonian constraint through by e - 2A 

and integrating over the surface gives 

which leads to the result 

< Ipe - 2A 12TI > < 1. (28) 

The angle brackets ·denote the average, with the measure 
d 2X. A similar expression with the measure e2A d 2X results 
when the constraint is integrated directly. From this it is 
apparent that the influence of the constraint is consistent 
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with the conjecture. Numerical results are also supportive, 
and it seems probable that an analytic proof could be con­
structed. 

v. THE LOCAL QUESTION 

The above arguments indicate that in an average sense 
the Einstein equations tend to prevent the expansion in the 
direction of symmetry from dominating the evolution. We 
now consider the local behavior. 

Can the sign 0/ K be different/rom 7" locally? 
The answer is yes. We demonstrate this by numerical 

solution of the initial value problem. Due to the nonlinearity 
offield equations, it does not appear that this problem can be 
dealt with by any other means. We then address questions of 
the implications of such local inconsistent patches by evolv­
ing the field equations numerically. A discussion of the com­
putational considerations of numerical solution of this sys­
tem can be found elsewhere. 8 

The initial data configurations used here all involve a 
Gaussian in the field p of varying widths and amplitudes, 
with the width chosen sufficiently small that discontinuities 
at the "boundary" are not significant. Other independent 
initial data fields are chosen to be zero. The flat metric is 
initially defined by lab = diag ( 1,1 ), and, in general, changes 
as a consequence of nonzero initial momentum (cab). The 
time slicing function 7"( t) is chosen to be t - 1; the space-time 
expands as the time increases. Units of measurement do not 
enter, as all quantities represent relative distances and are 
dimensionless. 

Figure 1 shows the minimum value of K on the initial 
hypersurface, as a function of the amplitude of the Gaussian. 
In this case we have 
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FI G. 1. The minimum of K over the initial hypersurface as a function of the 
amplitude of the Gaussian in the field p. The width is rr/S and 
c: = - c~ = ~. The accuracy of the numbers is approximately 1 part per 
thousand, less than the thickness of the line. 
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FIG. 2. The minimum of K, with everything as was defined for the Fig. I 
example, except that there is no global stretching c~ = o. 

4~G _O~) (29) 

and the width of the Gaussian is 1T/5. The plot indicates that 
there exist values for the amplitUde that lead to negative K. 
Figure 2 is equivalent except that in this case there is no 
Kasner style global anisotropy, that is c: = O. Here there are 
also values of the amplitude that lead to an inconsistent hy­
persurfaces, in this case including values arbitrarily close to 
zero (zero itself is ill defined, since the resulting space-time 
would be static). As the value of c: is increased further to 1, 
regions of negative K do not seem to arise, as shown in Fig. 3. 
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FIG. 3. The minimum of K, similar to Figs. 1 and 2, with the global stretch­
ing increased to c: = - ~ = 1. 
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The behavior is also sensitive to the width of the initial 
distribution. In the example depicted by Fig. 1, the region of 
negative K would disappear if the width were increased 
slightly to 21T/15. It is not clear whether the inconsistent 
region exists for all values of the width for the case c~ = O. 
Numerical experiments indicate that the qualitative behav­
ior holds until the width is increased beyond reasonable ap­
proximation, where the discontinuity at the "boundary" is 
pronounced and cannot be neglected. 

Given that Cauchy surfaces exist with such inconsistent 
regions, it is of interest to see ifthere is any qualitative behav­
ior that can be associated with resulting evolution. For ex­
ample, expanding space-times with locally collapsing 
patches are intuitively suggestive candidates to form local­
ized singularities. Some evidence has been generated in sup­
port of the view that local singularities in such expanding 
space-times are excluded by the presence of the global Kill­
ing vector symmetry,5 and a stronger analytic result has 
been generated for the two Killing vector case.9 In the ab­
sence of symmetry singularities would be free to form, but 
the issue has not been settled for the single Killing vector 
cosmological space-times under consideration here. The im­
portance of studying the implications of symmetry rests on 
the fact that much of the lore of general relativity is based 
upon examples with symmetry. 

We continue the evolution of the field equations for the 
initial data represented by the minimum of Fig. I, which 
corresponds to an amplitude of - 10. Figure 4 shows the 
minimum of K as a function of time. Initially there is a slight 
tendency for the configuration to focus and the minimum 
decreases, but rather than continue in this manner the situa­
tion is reversed and the minimum eventually becomes a max­
imum. The figure also indicates that the inconsistent patches 
recur periodically during the evolution, but do not seem to 
lead to any catastrophic behavior. 
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FIG. 4. The evolution of the minimum of K for the most extreme case de­
picted in Fig. I, where the amplitude was approximately - 10. 
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FIG. 5. The range of values covered by the expansion quantity I defined 
with respect to the x coordinate curves, for the evolution depicted in Fig. 4. 

In earlier work we used null geodesics to probe numeri­
cally generated space-times, and null expansion as an indica­
tor of trapped surfaces.5 If S ! are the in and outgoing null 
forms associated with a closed spatial two-surface (for con­
venience chosen here to lie along coordinate trajectories), 
the expansion sum ~ defined by 

a± =gWS ~{3P~P~' 
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FIG. 6. The range of values covered by the expansion quantity I defined 
with respect to the y coordinate curves, for the evolution depicted in Fig. 4. 
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serves to identify hypersurfaces likely to contain trapped 
surfaces. The physical picture is that of photons leaving a 
surface containing a black hole, with the proper distance 
between the photons everywhere decreasing. \0 

Figures 5 and 6 show the range of ~ as the space-time 
evolves, for both sets of coordinate families. Negative values 
here would provide the first indication that a trapped surface 
may exist. The fact that these quantities remain positive is 
supportive of the above result, that the inconsistent regions 
do not seem to be associated in a causal manner with the 
formation of local singularities. 

VI. CONCLUSIONS 

The object of this work is to understand the effects of 
symmetry on solutions to the Einstein equations, in particu­
lar solutions on T 3 XR with one Killing vector. We have 
shown that space-times foliated according to a constant cur­
vature prescription defined in the quotient space of the sym­
metry allow local patches that are inconsistent with the glo­
bal behavior. Evidence is provided which indicates that such 
local anomalies do not generically lead to a magnification of 
the inconsistency and the formation of a local singularity. 
We also establish a result that supports the view that in an 
average sense the expansions in the two-dimensional and 
three-dimensional formulations agree, and that the action of 
the Einstein equations is such that expansion in one direction 
cannot dominate the evolution. 

Based on these efforts and past numerical work, it ap­
pears that the effect of the Killing vector symmetry is to 
restrict the freedom and range of qualitative features present 
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in solutions. For example, the lack of local singularities in 
such space-times is not reflective of the natue of truly generic 
solutions. This is what one might expect, as even the elegant 
formulation employed here, where the Einstein theory is 
represented in terms of the dynamics of interacting scalar 
fields, is an artifact of symmetry. Eliminating the depend­
ence of symmetry and its coloration of scientific intuition is 
the motivation behind the development of uncompromising 
solvers of the Einstein equations. 
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A general class of similarity integrals of the Ernst equation with the method of Chandrasekhar 
and Xanthopoulos are combined to obtain a family of solutions for colliding waves in the 
Einstein-Maxwell theory. The family is parametrized by an arbitrary harmonic function that 
satisfies the Euler-Darboux equation. The first nontrivial member of the family is shown to be 
the cross-polarized version of the Bell-Szekeres solution. 

I. INTRODUCTION 

Collision of electromagnetic (em) waves with linear po­
larization in the Einstein-Maxwell (EM) theory was formu­
lated and solved first by Bell and Szekeres1 (BS) in 1974. 
Since then, a considerable amount of work has been done 
both in the realm of colliding gravitational waves (CGW's) 
and colliding waves in the EM theory. Colliding pure em 
waves form an interesting subset of the EM theory that cor­
responds to the classical limit of the photon-photon scatter­
ing. It was shown by BS that linearly polarized waves inter­
act and give rise to delta function curvature on the null 
boundaries, leaving the interaction region conformally flat. 
We have shown,2 more recently, that when the incident 
waves are endowed with relative polarization, some of the 
features of colliding linearly polarized em waves modify. 
The interaction region becomes curved and the'll 2 compo­
nent of the Weyl curvature, which is related to the mass 
aspect, emerges nonzero. Further, the space-time singularity 
that develops as a result of mutual focusing in pure gravita­
tional waves does not arise in the em case. Instead, a coordi­
nate singularity presents itself,3 whose exact physical impli­
cation has not been well understood. It is believed, however, 
that similar to the weakening of the singularity by the addi­
tion of the second polarization, coupling of em waves to the 
gravitational waves serves to weaken the singularity further. 
This particular aspect shows that there is a significant differ­
ence between the collisional behaviors between the em and 
gravitational waves. For this reason we reiterate our view 
that the EM solutions that admit independent em and gravi­
tational limits are more important than the other possible 
types. The most interesting case within the context of collid­
ing EM waves consists of the colliding superposed waves. 
Recently,4 we have formulated this as an initial value prob­
lem without being able to obtain an exact solution. 

In this paper we present a large family of solutions with 
the second polarization for colliding waves in the EM theo­
ry. Our general solution is parametrized in terms of an arbi­
trary harmonic function X and for particular choices of X it 
reduces to the solutions obtained previously. The method of 
obtaining this family is to combine the similarity solutions of 
the Ernst equationS with the general treatment of Chandra­
sekhar and Xanthopoulos6 (CX). We state our result as a 

aJ Present address: Physics Department, Eastern Mediterranean Universi­
ty, G. Magosa, Mersin 10, Turkey. 

theorem, according to which, given a vacuum solution for 
CGW's, we can construct an electrovacuum solution that 
describes colliding EM waves. We show that the simplest 
nontrivial member of the family leads to the generalization 
of the BS solution that was known previously. Some proper­
ties of this particular solution are given in the Appendix, 
where we show, in particular, that it is a type-D metric and is 
regular everywhere within the range of the coordinates used. 

In Sec. II we present the formalism and give the solution 
for the general family. Particular solutions come next in Sec. 
III, which is followed by concluding remarks in Sec. IV. A 
number of properties about the generalized BS solution are 
proved in Appendix A. 

II. METHOD FOR SOLVING EM EQUATIONS 

The symmetrical pair of Ernst 7 equations for the EM 
theory are given by 

(tt + 7]1j - l)V2t = 2Vt(tvt + 1jV7]) , 

(tt +7]1j-l)V27]=2V7](tvt + 1jV7]) , (1) 

where t and 7] represent the gravitational and em complex 
potentials, respectively. By introducing the new parametri­
zation 

Z = (1 + t)/(1 - t), H = 7]/(1 - t), (2) 

the Ernst equations can be expressed equivalently by 

(Re Z -IH 12)V2Z = (VZ)2 - iiivz·VH, 
(Re Z -IH 12)V2H = VH·VZ - iii(VH) 2. (3) 

The geometry on which the operators V and V2 act in these 
equations is given by 

di2 dO' 2 2 
di'Q = ~ - 8 + fl./) dt/J , (4) 

where fl. = 1 - i2, /) = 1 - 0' 2, and t/J is considered to be a 
Killing coordinate. The coordinates ( 7,0') are given in terms 
of the null coordinates (u,v), unless otherwise modified, by 

7 = u~1 - v2 + vI1=l1, 0' = u~1 - v2 
- vI1=l1, (5) 

suitable for the description of CGW's. We adopt the space­
time line element introduced by CX that reads 

d 2- v+1l3fA(di2 d0'2) s-e vLJ.----
fl. /) 

-~[x dy2 + ~ (dx - q2 dy)2], (6) 
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where the metric functions depend on (r,u) alone. Follow­
ing ex, we introduce two auxiliary real potentials 'I' and <I> 
in accordance with the expression 

Z = 'I' + IH 12 - i<l>. (7) 

Once a set (Z,H) of solutions to the Ernst equations is 
known, the metric function X is given by 

X=~/"" (8) 

whereas q2 and v + #3 are integrated from the following 
coupled equations: 

q2,T = (bI"'2)(<I>u - 2 1m HIt), 

q2,u = (.11/'1'2)(<I>T - 2 ImHHT), 

- (o/8)(v+#3)T - (r/A)(v+#3)u 

= (1/r)(XTXU + q2,Tq2,u) 

+ (2X/~)(HTHu +HTHu )' 

2r( v + #3 ) T + 2u( v + #3 ) u 

3 1 4X - -
=~+8-~ (AHTHT + 8HuHu) 

(9) 

-~ [11(X; +q~'T) +8(X~ +q~,u)]' (10) 
X 

The solution that we shall seek in this article is expressed 
in terms of the Ernst potentials (S,rl> by 

S=aSo, (11) 

1] = b - a2 So (a = real constant, 0< lal < 1), 

where So satisfies the vacuum Ernst equation 

(Iso 12 - 1 ) V 250 = 2to (VSo )2. (12) 

This particular choice for (5,1]) has the advantage that any 
future solution is constrained to possess independent em and 
gravitational limits. To obtain a solution for the vacuum 
Ernst equation (12) we parametrize So in accordance with 

So = Y(X)eiP(X), (13) 

where Yand /3 are both functions of the function X, which 
satisfies the Euler-Darboux equation 

(14) 

For this reason, the function X will be referred to as a har­
monic function in the rest of the paper. The solution for So 
isS 

So = (~1 + sin2 a cosh 2X - 1 )112 
~1 + sin2 a cosh 2X + 1 

Xexp[ - i tan - I (sin a coth 2X)], (15) 

where a is a constant of integration that, as we shall justify 
below, can be interpreted as the angle of the second polariza­
tion. In terms of'" and <I> this solution reads as 

l-isinacosh2X 
Z= "'-i<l> = . (16) 

~1 + sin2 a cosh 2X - sinh 2X 
In order to obtain the corresponding EM solution we 

shall summarize the procedure of ex as the following 
theorem. 

Theorem: Let (Z,'I',<I>,X, v + #3' q2) denote Ernst po-
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tentials and the metric functions for a vacuum solution of the 
Einstein equations. Then, in order to obtain an electrova­
cuum solution [Ze' '" e,<I> e,Xe'( v + #3 )e,q2e,H], it suffices 
to make the following replacements: 

Ze = "'e + IH 12 - i<l>e' Xe = ~/"'e = (02/4)X, 

"'e = (4102)'1', <l>e = (4a/02)<I>, 

H = b _ a2 ('" - i<l> - 1) , 
(1 - a)('I' - i<l» + a + 1 

(V+#3)e = (V+#3) +In(0214), 

where 

0 2 = (1- a)2(",2 + <1>2) + 2(1- a2)", + (1 + a)2, 
(17) 

and the integrability equations for q2e become 

1 1 2 8 2 q2eT =- ( +a) q2- +- (1-a) 
'4 "4 

X [_1_(<1>2 _ ",2)<1> + 2 <I> '" ] 
",2 u 'I' u' 

1 (1 2 11 1 2 q2e u = - + a) q2 u + - ( - a) 
'4 '4 

X [_1_ (<1>2 _ ",2)<1> + 2 <I> 'I' ]. 
",2 T 'I' T 

For the proof of this theorem, up to some minor changes in 
the notation, we would like to refer to the detailed analysis of 
ex in Ref. 6. 

It can easily be seen that for a = 1 the EM solution ob­
tained reduces to the vacuum solution that describes collid­
ing pure gravitational waves. Similarly, for a = 0, the solu­
tion describes colliding pure em waves in which the 
gravitational curvatures arise only due to the existing em 
field. We shall proceed now by employing the vacuum solu­
tion (16) in the Theorem to construct the electrovacuum 
solution that describes colliding waves in the EM theory. 
The remarkable feature of the vacuum solution (16) is that 
when it is substituted into the expressions (9), (10), and 
( 17) it yields significant reductions and cancellations. In 
particular, the equations that determine q2e and v + #3 for 
the vacuum take the forms 

Q2e,T = (1 + a2 )sin a 8Xu' 

Q2e,u = (1 + a2 )sin a AXT' 

and 

(18) 

2r r 28 
(V+#3 +In''')T= 8-A +~+ 8-11 [2uAXT XU 

- r(AX; + 8X~)], 
2u 2A 

(v + #3 + In "')u = --+ -- [2r8XT Xu 
11-8 11-8 

-u(AX;+8X~)], (19) 

in which 'I' is given in (16). 
It is observed from ( 18) that the integrability condition 

for Q2e amounts to the same Euler-Darboux equation satis­
fied by X in (14). This form for Q2e also provides for us a 
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justification for interpreting a as a measure of polarization, q2 = T sin a, 
since, when a = 0, it leads to q2e = O. We complete our ex-
pressions by giving 0 2 and X, and 

! 0 2 = ~1 + sin2 a(1 + a2)cosh2X - 2asinh2X + 1 -02 
2 ~1 +sin2acosh2X-sinh2X ' 

(20) 

X = ~ (~ 1 + sin2a cosh 2X - sinh 2X). (21) 

Expressions (18)-(21) provide the necessary information 
to be used in the family of electrovacuum solutions in terms 
of an arbitrary harmonicfunctionX. Taking a = 0 and a = 1 
the family reduces to the pure em and pure gravitational 
(vacuum) limits, respectively, as it should. The remaining 
task now is to make particular choices for X and find the 
metric functions explicitly. 

III. PARTICULAR SOLUTIONS 

It is well known that a general class of separable solu­
tions for the Euler-Darboux equation (14) is given by 

X(T,o-) = L [anPn (T)Pn (0-) + bnQn (T)Qn (0-) 
n 

+ CnPn (T)Qn (0-) +dnPn(o-)Qn(T)], (22) 

where P and Q are the Legendre functions of the first and 
second kinds, respectively, and an' bn, Cn, and dn are arbi­
trary constants. Now, we shall show that the simplest nontri­
vial solutions for X lead to the previously known solutions. 

(a) The choice Po = 1, Qo = !In[ (1 + 0-)/(1 - 0-)], 
Co = 1, Cn = 0 (n#O), an = bn = dn = O. (This is equiva­
lent to X = tanh - I 0-.) Also, in order to obtain a pure em 
solution we make the choice a = 0 and the vacuum functions 
for this case become 

'I'-i<l> = [1-0-2-i(1 +0-2)sina1/ 

[~1 + sin2 a(1 + 0- 2) - 20-], 

X=~.:VO[~1 +sin2a(1 +0- 2) -20-], (23) 

Pl? = [~1 + sinZ a(1 + ~) + (1 - ~) ]I 

[~1 + sinZ a(1 + ~) - 20-]. 

Applying the Theorem to this vacuum metric, we obtain the 
line element 

d~ = F( d: _ d~2) _ Mdy _ ! (dx _ Tsin a dy)2, 

(24) 

where 

2F=~1 +sin2a(1 +0- 2) + 1_0-2. 

This solution, with a different parametrization, 
tan () = sin a, was reported previously.2 For a = 0 it re­
duces to the BS solution and therefore it describes colliding 
em shock waves with the second polarization. In Appendix 
A we show that it belongs to a class of particular type-D 
space-times. Also, in Appendix B we formulate the problem 
of colliding pure em waves as a variational principle from a 
Lagrangian. CX8 also gave a solution for the EM theory as a 
generalization of the BS solution with second polarization. 
Their solution, however, involves two essential parameters 
and it represents colliding dual rotated em shocks accompa­
nied by gravitational waves. In this sense the solution (24) is 
the only available solution to date that represents colliding 
pure em waves with the second polarization. 

We obtain a new solution now by relaxing a = 0 and 
considering O..;;a..;; 1. Applying the Theorem to the same seed 
vacuum metric that led us to (24), we obtain 

q2e = (1 +a2)Tsina, 

Xe = !02~.:VO [~1 + sin2 a(1 + 0- 2) - 20-], 

e(v+Il,),. = !(02/v'K) [~1 + sin2 a(1 + 0- 2) - 20-], (25) 

where 

1.. 02 = ~1 + sin2 a(1 + a2
)( 1 + 0- 2) + (1 - a2

)( 1 - 0- 2) - 4a0- . 

2 ~1 + sin2 a(1 + 0- 2) - 20-

One can easily show that this solution reduces to (24) in the 
limit a = O. Also, in the linear polarization limit a = 0 
(a#O) it gives us a metric that describes colliding em shock 
waves of BS coupled with gravitational waves. 

(b) The choices, Co = (k l - k2 )/4,do = (k l + k2 )/4 
(all other coefficients zero), is equivalent from (22) to 

e2X = [(1 + T)/(1 _ T)] (k, + k2)/4 

X [( 1 + 0-)/( 1 _ 0-)] (k, - k2)/4. (26) 

This leads to the Szekeres9 family of solutions for collid­
ing gravitational waves with linear polarization. 

We have shown recently that by making use of this 
expression for X we obtain a family of solutions with the 
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second polarization. 1o Here now, we shall obtain from the 
Theorem an electrovacuum generalization ofthis family. In 
order to employ this family we modify the definition of (T,o-) 
coordinates in accordance with 

T = unl/2~ 1 _ vn2 + vn2/2~ 1 _ un, , 

0- = unl/2~ 1 _ vn2 _ vn212~ 1 _ un, , 

(27) 

where the parameters (n l ,n2 ) are related to (k l ,k2 ) by 

(28) 

The vacuum solution describing CGW's with second polar­
ization is given by the functions lO 
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x = ,fM/"', 
q2 = !sin a[(kl -k2)1"+ (k l +k2)u], 

eV+I'J = (11"')(1" + u) 1- k~/4( 1" _ u) 1 - k~/4 

(29) 

X (1 - r) - 112 + (k, + k,)2/16( 1 _ U 2) (k, - k,)2/16, 

where 

'" = 1I(~1 + sin2 a cosh 2X - sinh 2X) 

and X is given by (26). Generalization to colliding EM 
waves follows immediately from the Theorem, 

Xe = (!l2/4)X, 

q2e = ~(l + a2)q2' 

e(v+I'J), = (!l2/4)ev+l'" 

(30) 

where !l is given by (20), in which X is expression (26). 

IV. CONCLUDING REMARKS 

Since the solutions are parametrized in terms of the so­
lutions of a linear Euler-Darboux equation the family pre­
sented in this paper is quite large. Starting from a diagonal 
seed metric for CGW's our method enables us to obtain a 
cross-polarized electrovacuum solution for colliding EM 
waves. The simplest member of the family is shown to gener­
alize the BS solution to the case with second polarization. 
The same solution was obtained by a method that made use 
of an analogy with cylindrical waves and also involved te­
dious integrations of the BS equations. The fact that this 
turns out to be a type-D metric is not surprising since it has 
already been pointed out by CX8 that there is a connection 
between type-D space-times and the absence of curvature 
singularities in colliding waves. 

Further extension of our method to the case of parame­
trizing the Ernst potential of CGW's by n harmonic func­
tions seems possible, however, we maintain that the physical 
significance of solutions is much more important than their 
mathematical existence. 

APPENDIX A: PROPERTIES OF THE CROSS 
POLARIZED BS METRIC 

The BS line element that describes colliding em waves is 
dSZ = 2e- M du dv - e- U[e V cosh W dx2 

+ e - v cosh W dr - 2 sinh W dx dy], (A 1) 

in which all metric functions depend on the null coordinates 
u and v. The solution (24) was obtained by a different meth­
od in the coordinates 

1" = sin(au + bv), U = sin (au - bv), (A2) 

where a and b are constants. The BS metric functions 
and the em field strengths are given as follows: 

e-M=l:, e-u=~~I-u2, 

sinh W = (1"/l:)~(l - u 2)/(l - r) sin a, 

e - v tanh W = 1" tan a, 

tP2 = (a/../k)( cos all:) 1I2eiy, 

tPo = (b l,fk)( cos all:) 112eiE, 
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(A3) 

where 

l: = cos2(a/2) + u 2 sin2(a/2), 

siner - E) = tanh W, (A4) 

tan [ (r + E)/4] = utan(a/2), 

and we note that we have adopted the notation of Ref. 2 with 
(O-+a). In order to see the difference between this solution 
and the BS solution, we evaluate the electric (E) and the 
magnetic (H) fields in an orthonormal frame {wa

}, where 

dSZ = (dWO)2 _ (dWi )2. 

The field components are 

Ex = F02 = Re(tPo - tP2)' 

Hy = F12 = - Re(tPo + tP2)' 

Ey = F03 = Im(tPo + tP2)' 

Hx = F31 = Im(tPo - tP2)' 

(AS) 

which imply, in contrast to the BS case, that both field invar­
iants E·H and E2 - H2 are nonzero. 

In order to calculate the curvature components we make 
use of the CX line element 

dSZ = l:(dt/l- d( 2) - [(sin,p sin 0 II - EE] 

X 1(1 - E)dx + i( 1 + E)dyI2. 

Here, 

E = (Z - 1)/(Z + 1), 

(A6) 

Z = sin O(l: sin ,p - i sin a sin 0 cos,p) -I; (A7) 

l: is given in (A4) and we have chosen a = 1 = b, such that 
the new coordinates (,p,0) are related to (1",u) by 

1" = cos,p, u = cos O. (A8) 

After significant reduction the non vanishing Weyl and Max­
well scalars are found as follows: 

"'2 = R, "'4 = - 3e
iA
R, "'0 = - 3 Re- iA

, 

2tPoo = 2tP22 = cos all:2, (A9) 

- 2tP20 = eiA cos all:2, 

where 

R = sin(a/2) sin(a/2) - i cos 0 cos(a/2) 
2l: [cos(a/2) + i cos 0 sin(a/2)] 2 ' 

iA sinO +l:sin,p+isinasinOcos,p 
e = . 

sinO +l:sin,p-isinasinOcos,p 
(AW) 

From these expressions it is readily seen that the relations 

9"'~ = "'0"'4' 
3tPoo "'2 = tP20 "'0 , (All) 

hold; therefore the solution (A3) belongs to a class oftype­
D metrics. On this account we make two successive null­
tetrad rotations8 to make the principal null directions of the 
Weyl and Maxwell tensors coincident. As a result of these 
transformations we obtain the principal values of the invar­
iants as 

"'2 = -2R, "'0 ="'1 ="'3 ="'4 =0, 
(A12) 
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By choices of the polarization angle a these invariants can be 
shown to be free of singularities. 

APPENDIX B: THE VARIATIONAL PRINCIPLE 

The problem of colliding pure em waves can be formu­
lated as a variational principle, provided we introduce two 
potential functions as follows. We define the em potential 
one-form by 

A =AJl dxl'=A dx+Bdy, (Bl) 

where A and B are the components in the Killing directions. 
The em field two-form is given, accordingly, by 

F=dA, (B2) 

where d stands for the exterior derivative. The null-tetrad 
basis one-forms are chosen as 

1= e- M12 du, n = e- M12 du, 

m = e~/2 {e V/2(isinh ~ -COSh~dX 

+ e- V/2(sinh ~ - i cosh ~dY} , 
and the field two-form is given by 

(B3) 

F = ¢21 /\ m + ~21 /\ m - ~o n /\ m - ¢o n /\ m, (B4 ) 

in which /\ is the wedge product. The dual basis two-forms 
are 

*(//\m) = - i//\m, *(n/\m) = in/\m, 

*(//\m)=i//\m, *(n/\m) = -in/\m, (BS) 

so that the dual field two-form becomes 

- i* F = - ¢21 /\ m + ~21 /\ m - ~o n /\ m + ¢o n /\ m. 
(B6) 

The sourceless Maxwell equations, 

dF=O=d*F, 
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(B7) 

are satisfied everywhere, including the null boundaries. The 
em field strengths ¢o and ¢2 are expressed in terms of the 
metric functions and the potentials by 

e
U

/2 { (" W !f\ ¢2 = .,fi e- V/2 I smh '2 - cosh '2;Au 

+ e
V

/2(i cosh ~ - sinh ~Bu} , 

¢o = e
U

/2 {e- Vl2(isinh W + cosh !f\Av 
(B8) 

.,fi 2 2r 
+ e

V
/2(i cosh ~ + sinh ~Bv} . 

As a result of all these expressions it can be checked by 
direct calculation that a suitable Lagrangian that describes 
colliding em waves is given by 

L=e-u(MuUv + MvUu + UuUv - VuVvcosh2 W), 

- 2k{(BuBvev +AuAve - v) 

X cosh W + (AuBv + AvBu ) sinh W}, (B9) 

where k is a coupling constant. BS equations now follow 
from the variational principle 

8I = 0, 1= f L du du. (BlO) 
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The general forms of quantum effective actions in the presence of vector and axial-vector gauge 
potentials on Riemann-Cartan manifolds with torsion are discussed. The relations between 
different forms of anomalies are elucidated. 

I. INTRODUCTION 

In recent years anomalies have played an increasingly 
important role in the study of field theories and particles 
physics. Anomalies appear when some symmetry at the clas­
sical level gets lost after the quantization process. A com­
plete understanding of anomalies is crucial to implement 
those symmetries in physical problems. 

The discovery of the anomalous breaking of the chiral 
and gauge symmetries has been done in the framework of a 
perturbative analysis based on Feynman diagrams. 1-4 

Later on, Fujikawa has suggested a way to describe 
chiral anomalies within the context of a path-integral for­
malism. 5

,6 In this approach anomalies are related to the non­
invariance of the fermionic functional measure with respect 
to the corresponding symmetry group of transformations 
and therefore, eventually, to Jacobian functional determi­
nants. 

Although heuristically powerful, that procedure is not 
completely satisfactory as it involves formal manipulations 
with ill-defined mathematical quantities; as a matter of fact 
it has been shown that, in general, it gives rise to controver­
sial or ambiguous results.7 A very convenient and rigorous 
method to treat functional determinants is provided by the 
~-function regularization,8,9 which allows a suitable defini­
tion of the effective actions as path integrals. Following this 
method, the well-known result ofBardeen3 for the non-Abe­
lian consistent axial anomaly has been recovered. 1O The 
above technique can be suitably generalized in order to deal 
with curved spaces as shown in Ref. 11; in this work the 
consistent and covariant forms of the non-Abelian anoma­
lies have been computed in terms of the coefficients of the 
heat kernel asymptotic expansion on a Riemann-Cartan 
manifold with a general non vanishing torsion. 

It is the aim of the present note to clarify the relation 
between the consistent and covariant forms of the non-Abe­
lian anomalies, within the context of the ~-function regular­
ization method and in the presence of general vector and 
axial-vector gauge potentials on Euclidean four-dimensional 
Riemann-Cartan manifolds. As a matter of fact, it is 
known 12 that the covariant form of the anomaly for a left­
(right) handed chiral coupling in a fiat space-time can be 
obtained from the consistent one by adding to the expecta-

tion value of the left (right) current (Ji(R» alocalpolyno­
mial functional of the gauge potential. The resulting current 
(j i( R) ) is determined by the requirement of being covariant 
under local gauge transformations, in such a way that its 
covariant divergence is also covariant. This means that it is 
always possible to set up the covariant form of the anomaly 
from the knowledge of the consistent one and vice versa 
(modulo trivial cocycles), within a given regularization 
scheme. Morever, it is claimed12 that only the consistent 
form correspond to a local variation of an effective action 
functional, as it turns out to satisfy the Wess-Zumino consis­
tency conditions. 

In the present work we will show that, on general 
ground, both forms of the non-Abelian anomaly do indeed 
correspond to local variations of suitable effective actions. 
Furthermore we explicitly derive the expression of the local 
functional relating the consistent form of the nonsinglet 
anomaly in the vector-axial-vector theory to the covariant 
one, for the gauge theory of a massless Dirac field with arbi­
trary internal degrees of freedom, on a Euclidean four-di­
mensional curved space and in the presence of an external 
arbitrary torsion field. The expression we obtain reduces to 
the one of Bardeen and Zumino12 in a suitable limit. 

II. THE CLASSICAL MODEL 

Our starting point is the classical Euclidean action, for a 
Dirac fermion t/J on a four-dimensional curved space with 
arbitrary torsion (for more details on this model see Ref. 11) 

s= J [it/Jtr" ( ~ Vk + Vk + rAk )t/J]~d4X' (1) 

where 

(2) 

i,j, ... , and Jl, v, ... , being holonomic and anholonomic indices, 
respectively, gjk a metric with signature ( + , + , + , + ) 
and determinant g, yP = (yP)t, r = (r)t and 
dJ.V = (112) [yP,yV] the usual Euclidean Dirac matrices and 
rtV the Cartan connection. For vector and axial-vector 
gauge potentials we use the matrix notation Vk = - iV%Ta, 
Ak = - iA %Ta, To being the Hermitean generators of the 
gauge group, in the given representation (a = 1, ... ,N). 
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We notice that, even if we choose 'If! and 'If!t as Euclidean 
conjugate spinors belonging to a unitary representation of a 
compact group, the classical action ofEq. (1) does develop 
an immaginary part due to presence of the axial-vector cou­
pling. As a consequence it is quite natural to consider a gen­
erallinear complex group as the gauge group. From Eq. (1), 
we obtain the field equations 

iy'«Vk + Vk +rAk + !Sk)'If!= tJ'If!= 0, (3) 

Sk being the trace of the torsion tensor. The classical action 
is invariant with respect to vector and axial-vector general 
linear complex transformations. In the infinitesimal form 
they read (E(x) = E"'(x)1"a): 

Dy'lf! = - E'If!; Dy V k = Jk E + [V k ,E], 

DJi, = ¢E; DyAk = [Ak,E], (4) 

DA'If!= -rE'If!; DAAk =JkE+ [Vk,E], 

DA¢= - ~E; DA Vk = [Ak,E]. (5) 

The corresponding classical conservation laws can be writ­
ten in the form 

VkJ k+ [Vk,J k ] + [A k,5Jk] =0, (6) 

V k 5 J k + [Vk' 5 J k] + [A k,J k] = 0, (7) 

where J k = W1" a 'If!7'' and 5 J k = Wr 1" a 'If!7'' are the vector 
"'-

and axial-vector currents, respectively, while V k is the co-
variant derivative with respect to the Levi-Civita connec­
tion. As it is well known, in the quantization process the 
conservation laws may acquire an anomalous term. This 
means that the right-hand sides of the quantum version of 
Eqs. (6) and (7) can be, in general, different from zero, that 
is equal to d a 7" and 5 d a 7", respectively. The values of 
these quantities can be obtained once a precise definition for 
the effective action has been given. 

III. THE EFFECTIVE ACTION 

Let us now define the generating functional W[ V,A,g ] 
for connected Green's functions as 

1 d 
W[V,A,g] =--t(H,s)ls=o, 

2 ds 
(S) 

where t(H,s) is the t function8
•
9 related to the second-order 

differential operator H = tJ t tJ we supose to be positive defi­
nite (the possible presence of kernels in H can be accustomed 
with an obvious modification of the t-function definition of 
the corresponding functional determinant). It should be em­
phasized that, due to the spectral theorem, the present defin­
ition corresponds, in the path-integral formulation, to a non­
local action in the exponential integrand, in contrast with the 
classical one of Eq. (1). By means of the transformations 
( 4 ), (5) we get 

Dv Dv , 
- W[ V,A,g] = d a = -t (H,O), (9) 
DE'" 2DE'" 

D D 
~ W[V,A,g] = 5da =-A-t'(H,O). (10) 
DE'" 28Ea 

We shall study the variation of the effective action ofEq. (S) 
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under infinitesimal vector and axial-vector transformations. 
For the Dirac operator we have 

DvtJ = - [tJ,E], (11) 

DAtJ = - {tJ,rE}, (12) 

whence 

DvH = 2tJ tEtJ - tJ ttJE - EtJ ttJ, (13) 

DAH = - 2tJ trEtJ - tJttJrE - rEtJttJ, (14) 

with E=!(E + Et); we see that only the noncompact parts of 
the transformations lead to non vanishing variations. Taking 
into account the differentiability properties l3 of zeta func­
tion one gets: 

Dvt'=t'(O,H + DvH) - t'(O,H) 

d - - [s Tr(H -s-IDvH>] 
ds 

-!!... [s Tr(H -s-ltJEb) - Tr(H -s E) J. 
ds 

(15) 

If we denote with ifJ nand ct> n a complete set of orthonormal 
functions satisfying: 

Hct>n = tJtbet>n = A,nct>n, (16) 

tJtJtifJn = A,nifJn, 

where 

bet> n = JI:, 

tJtifJn =JI:ct>n, 

we can write 

x (ct>m,tJtEbet>m) - (ct>n,(tJttJ) -S-I€ct>n)] 

= !!...sTr[ (tJttJ) -s _ (tJtJ t ) -S]E, 
ds 

(17) 

(1S) 

(19) 

(20) 

so that, taking into account the value in zero ofthe t function 
is related (in four dimensions) to the second coefficient 
a2 (H,x) of the heat kernel expansion,9 we obtain 

:i:t a = (1I16r)tr{1"a [a2 (tJ ttJ,x) - a2 (tJtJ t,x>]}, (21) 

5:i:t a = (1/16r)tr{ra r [a2 (tJ ttJ,X) + a2 (tJtJ t,X) p. 
(22) 

These formulas provide the "covariant" expression of the 
anomalies. 

The explicit computation of the heat kernel expansion 
coefficients and the detailed derivation of the anomalies can 
be found in Ref. 11. Here, we simply report the final expres­
sions that are necessary to our purposes. Using Eqs. (21) 
and (22) we have: 

:i:ta = (lISr)tr[F*G + G*F]1"a' (23) 

5:i:t a = (lISr)tr[F*F + G *G ]1"0' 

where 
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Fij =a;~ -ajv; + [V;.~] + [A;,Aj]' 

Gij = a;Aj - ajA; + [A;,Aj] 

and the dual quantities are built up by means of the com­
pletely antisymmetric Levi-Civita symbol eJJ-vafJ' that is 
* FJJ-v = (1/2) e IwafJF afJ and so on. These expressions of the 
anomalies are formally the same that one obtains in the fiat 
spacel4 and, when thechirallimit V /2 = A /2 = V' is taken, 
they give rise to the covariant form of the anomalies. 

It is not difficult to verify that the choice DD t in place of 
D t D to define the effective action gives rise to the same result 
for the anomaly. It is important to remark that an alternative 
definition for the effective action is provided through the 
operator H = D 2. We would like to remark that, in order to 
implement this definition, it is necessary to perform the re­
placement Ak --+iAk in such a way to obtain a self-adjoint 
operator D( Vk,iA k ). 14.15 Notice that, even in this case, the 
group of invariance of the analitically continued classical 
action is still the general linear complex group of vector and 
axial-vector local transformations. 

Using Eq. (9) and recalling again the properties of the; 
function, we get: 16 

.J2i' a = 0, 

5.J2i'a = (1/8~)tr[1"ara2(D2,x)]. 
(25) 

(26) 

These formulas give an expression for the axial anomaly sat­
isfying the Wess-Zumino integrability conditions. 17 Notice 
in fact that, in the present case, the effective action is related 
to a path integral where the exponential integrand contains 
the analitically continued classical action. From Eqs. (25) 

and (26), following the method of Ref. 11 one obtains: 

.J2i' a = 0, (27) 

5.J2i' =-l-tr[F*F+J...G*G+~AJJ-AVAaAfJe fJ] 
a 8~ 3 3 JJ-va 

_i. [*F..A;Aj+A;Aj*F.. +Ai*F..A j]1" (28) 3 IJ lJ lJ a' 

We observe that the above expressions for the anomalies are 
formally the same as obtained by Bardeen3 in the fiat space­
time. They satisfy the usual Wess-Zumino integrability con­
ditions,17 at variance with the corresponding covariant ones 
as given in Eqs. (23) and (24). The reason for this feature is 
due to the fact that the covariant form of the anomalies 
arises, as we have seen, from the infinitesimal noncompact 
variation of a generating functional corresponding to a non­
local action [see Eq. (8)]. We would like to remark that, 
concerning the above last point, there are inaccurate and 
confusing statements in the recent literature. 18 

In Ref. 12 it has been shown that it is possible to obtain 
the covariant forms of the current and of the anomaly from 
the knowledge of the consistent ones in the chiral case. Here, 
we explicitly set up, in the present general case, the local 
polynomials Xk and 5Xk of the gauge potentials so as to define 
two new currents J k = J k + Xk and 5J k = 5 J k + 5Xk satisfy­
ing the conservation laws: 
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(29) 

Vk
5Jk+ [Vk ,5Jk] + [Ak,Jk] =5d'a~. (30) 

We recall that J k and 5 J k satisfy similar conservation laws, 
but with .J2i' a and 5 .J2i' a in place of d' a and 5 d' a' respectively. 
This means that X and 5X fulfill the relations 

VkXk+ [Vk'Xk] + [Ak,5Xk] = (d'a -.J2i'a)~' (31) 

V/Xk+ [Vk,5Xk] + [Ak'Xk] = ed'a _5.J2i'a)~' (32) 

Then we easily get, after some algebra 

X~ = - (1/8~)tr1"aO(*GkjAj +A/Gkj)], (33) 

5X~ = - (1/8~)tr 1"a 

X [2(*F kjAj + Aj *Fkj) - ~ekjrsAjArAs]. (34) 

The known results of Bardeen and Zuminol2 can be reached 
by taking the chirallimit V /2 = A /2 = V' and reducing to 
the fiat space case. 

IV. CONCLUSION 

To sum up we have seen that, following the ;-function 
regularization method to set up effective actions, it is possi­
ble to derive the covariant and consistent forms of the non­
singlet anomalies in the general vector-axial-vector theory 
on Riemann-Cartan manifolds as infinitesimal variations 
with respect to general linear groups of gauge transforma­
tions. It is important to appreciate that, in a quite general 
framework, both forms do indeed arise as limits of local 
functional derivatives of suitable ;-regularized effective ac­
tions. Moreover, it is possible to obtain the explicit expres­
sion of the local functional that relates, in the present general 
case, the two above-mentioned forms of the anomalies; that 
functional correctly reduces to the Bardeen-Zumino one in 
the fiat space and chirallimits. 
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In the present article, a complete separation of variables in the Dirac equation for a free 
particle is achieved in parabolic cylinder and elliptical coordinates. The resulting system of 
ordinary differential equations is solved and the asymptotic behavior of the spinor solution is 
discussed. 

I. INTRODUCTION 

One of the most interesting problems in mathematical 
physics is the study of systems of partial differential equa­
tions and the search for their exact solutions which, in gen­
eral, represent a different task, due to the lack of a general 
method I to study such systems. 

The method of separation of variables is, perhaps one of 
the most successful techniques available to find exact solu­
tions of partial differential equations because it allows us to 
reduce a particular problem to a system of ordinary differen­
tial equations which are more widely studied in the litera­
ture. Because of the complexity of the Dirac equation, that 
is, a system of four coupled partial differential equations, 
only a few exact solutions have been reported.2

-4 Recently, 
some constants of motion associated with the separation of 
variables in the Dirac equation in curved space-times have 
been characterized. Also, there has been a great interest in 
the study of the behavior of probe particles in the vicinity of 
black holes and space-time singularities. 5

•
6 The spinning 

field in the Kerr metric has also been a subject of detailed 
analysis and some criteria of separability of variables have 
been obtained by Teukolsky,7 Carter,s McLennaghan,9 and 
Guven,1O among others. Chandrasekharll has shown that 
the Dirac equation admits a separable solution in the Kerr 
metric, and, therefore, the Dirac equation in Minkowski 
space admits separable solution in oblate spheroidal coordi­
nates. Bagrov et al. 12 have found new exact solutions to the 
Dirac equation, in the presence of electromagnetic fields in 
curvilinear coordinates. Such coordinates were obtained in 
the analysis of separability of variables in the Klein-Gordon 
equation. 

It should be mentioned that, for a free particle, exact 
solutions to the Dirac equation, after separation of variables, 
have been reported only in Cartesian, cylindrical, and 
spherical coordinates. 13 Chandrasekhar's result has origin­
ated a series of works devoted to analyze the conditions of 
separability of variables and the peculiar nature of spheroi­
dal coordinates. Here, the work of Cookl4 and the more 
recent article of Kalnins et al. 15 should be mentioned. The 
method of separation of variables, based on a complete set of 
first-order differential operators l6.17 has been applied in the 
search of new exact solutions to the Dirac equation in curvi­
linear coordinates in the presence of external vector fields, 

.) Postal address: Carrnelitas 4282, Caracas IOIO-A, Venezuela. 

and the authors have paid particular attention to the prob­
lem of separability in orthogonal curvilinear coordinates 
when the Lame metric functions depend on two variables, 
i.e., parabolic and elliptic cylinder coordinates and spheroi­
dal coordinates. The above results were obtained in a formal­
ism of first-order differential operators where no null tetrads 
are required in order to write the resulting equations. 

In the present paper, we show how the method ofsepa­
ration of variables 16.17 enables us to find new exact solutions 
to the Dirac equation, for a free particle, in parabolic and 
elliptic cylinder coordinates. In Sec. II, the separation of 
variables for the Dirac equation for a free particle in the 
above-mentioned coordinates is achieved. In Sec. III, the 
equations obtained in Sec. II are solved, and the asymptotic 
behavior of the wave spinor is presented. 

II. SEPARATION OF VARIABLES 

Orthogonal cylindrical curvilinear coordinates are de­
fined by 

x=j(p,v), y=g(p,v), z=z, t=t, (2.1) 

where the functionsjand g satisfy the conditions 

Jj Jg Jj Jg 
-=-, -= --. (2.2) 
Jp Jv Jv Jp 

Therefore the metric form is 

gaP = diag( - 1;(f~ + j~v );( j~ + j~v );1), (2.3) 

where the comma indicates partial differentiation. 
Let us obtain the Dirac equation in the curvilinear co­

ordinates (2.1), (2.2) referred to both fixed tetrads (Carte­
sian gauge tetrad) and rotating tetrads (diagonal gauge tet­
rad). In the first case, the Dirac equation takes the form 

{raJa + m}tPc = O. (2.4) 

The connection between the Dirac matrices in the Car­
tesian gauge (if') and the constant Dirac matrices (yP) is 
established by 

if' = h cpyP, (2.5) 

with 

yl = (.Jj~ + j~v ) - I [ II' yl + g.J' r] , 

? = (.Jj~ + j~v) -I [Ivy! +g.vr], 

r = r\ yo = JIl, 
(2.6) 
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where a takes the values 0, 1, 2, 3 which correspond to co­
ordinates t, Il, v, and z, respectively. 

The constant Dirac matrices (rft) satisfy the relation 

r"rft + rftr" = 2na
{3; na

{3 = diag( - 1,1,1,1). (2.7) 

If the differentials are evaluated with respect to a rotat-
ing tetrad, the Dirac equation reads 

{yav a + m}t/Jd = 0, (2.8) 

where Va denotes the covariant differentiation defined by 
the relation 

Va = aa - ra 

with the spinor connection r a given by 

r a = ig"JLA {aah 'ah; - r~a}saa, 

where 

saa = !(yaya _ yaya). 

(2.9) 

(2.10) 

(2.11) 

In the diagonal gauge, the ymatrices associated with the 
coordinates (2.1) when expressed in terms of the constant 
Dirac matrices, take the form 

;:jJ .jJ -I I r = r, Y = Y Ih, (2.12) 

where 

(2.13 ) 

is the Lame metric function. 
It is easy to see that, the set of matrices (2.6) and (2.12) 

satisfy the same algebra 

[ya,?] + = [jrt,j.P] + = 2ga{3' (2.14) 

therefore, they are related by a transformation S 

(2.15 ) 

where 

tP = tP(Il,V) = arctan (g.JL I/JL ). 

In order to separate variables in Eq. (2.8), it is convenient to 
define a new spinor <P 

<P = if,! + j,~) 1/4·t/Jd. (2.17) 

Then, the Dirac equation, in the diagonal gauge, for the 
spinor <P reads 

{yOao + (yllh)a l + (y-Ih)a2 + r a3 + m}<P = o. 
(2.18) 

Notice that the matrices which appear in Eq. (2.18) are the 
constant Dirac matrices satisfying relation (2.7). 

Applying the method of separation of variables, Eq. 
(2.18) can be written as a sum of two first-order commuting 
differential operators as follows: 

{kl +k2}~=0, [kl,kd =0, (2.19) 

with 

kl = (lIh){yla l + y-a2}ryO, 

k2 = {ra3 + yOao + m}ryO, 

~=ryOtP, 
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(2.20) 

(2.21) 

(2.22) 

(2.23) 

where R is a constant of separation. 
It should be noticed that the equation k2 ~ = - iR~ 

does not depend on the variables Il and v, and it commutes 
with the "energy" operator iao and linear momentum opera­
tor, ia3 , whose eigenvalues are E and Pz ' respectively. There­
fore, the effect ofEq. (2.22) for k2 is to relate the different 
components of the spinor tP among themselves. Choosing to 
work in the Jauch and Rohrlich l8 representation for Dirac 
matrices 

yO = (0- i ~), Y = (~ ~). K = 1,2,3, (2.24) 

and substituting (2.24) into (2.21), we find that, <P takes the 
form 

- (tPl (Il,v) ) 
tP = -.3 exp i(Pzz - Et), 

[(m + E)/(R + iPz )] UtPl (Il,v) 
(2.25) 

where the constant of separation R satisfies the relation 

(2.26) 

The equations for tPl (Il,v) and tP2 (Il,v) can be obtained by 
substituting (2.24) into (2.20) and considering (2.23). 
Then, we obtain for tP the following two systems of equa­
tions: 

(2.27) 

-2 I :t: = (~21). (ual -ua2 +ihR)tP2 =0, 'fJ 'fJ (2.28) 

It is clear from (2.25), that the problem of finding a solution 
to Eq. (2.18) reduces to solving any of the above two equa­
tions. In particular, we choose to work with Eq. (2.27). 

It should be noticed that the presence of the Lame met­
ric function h in Eq. (2.27) does not allow us to separate the 
variables Il and v in a straightforward way; i.e., we cannot 
write (2.27) as a sum of two first-order commuting differen­
tial operators k I (Il) and k2 ( v). Therefore, we shall intro­
duce a similarity transformation T(Il, v) acting on the Pauli 
matrices and on the spinor tPl in order to write (2.27) in a 
more simple way, where the functional dependence onll and 
becomes v additive. 

Let Tbe a matrix of the form 

(2.29) 

with 

a = a (Il,v) , P = P(Il,V). 

Substituting (2.29) into (2.27), and imposing the relations 
between a and P 

a'i = P'2' P'I = - a'2 
it is easy to see that Eq. (2.27) becomes 

{~al - U
la2 + ihRe2iau'} Y = 0, 

where Y is related to tPl by the expression 

TY=~I' Y= (YY21). 

(2.30) 

(2.31 ) 

(2.32) 

The variables Il and in (2.31) can be separated if we impose 

e2aiu' = [a(ll) + ib(v)if]!h, (2.33) 

with a2 + b 2 = h 2. 
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Among the orthogonal curvilinear coordinates with cy­
lindrical symmetry satisfying conditions (2.30) and (2.33), 
we find the parabolic and elliptic cylinder coordinates given 
by 

and 

x = (/-l2 - ';)/2, Y = /-lv, 

x = a sin/-l cosh v 

(2.34) 

Y = a cOS/-l sinh v (2.35) 

where the values of a and {3 were obtained in Refs. 17 and 19. 
The equation resulting from the substitution of (2.33) 

into (2.31) reads 
A A 

(L I + iL2if) Y = 0, (2.36) 

where 
A A 

LI = cral + iRa, L2 = cra2 + iRb. 
A A A 

It is easy to see that LI and L2 commute but not LI and 
A 

L2 if. Therefore, it is not possible to achieve separation of /-l 
and v by using two first-order commuting operators. It is, 
then, necessary to work in a second-order formalism. Let Z 
be a new auxiliary spinor 

Y = (iifL I + L2 )Z. (2.37) 

Substituting (2.37) into Eq. (2.34), we get 

[(ai +iRcral a+R 2a2) 

+ (a~ +iRcra2b+R 2b 2)]Z=0. (2.38 ) 

The presence of cr in (2.36) mixes the components ZI and 
Z2 of the spinor Z. A further simplification ofEq. (2.36) can 
be accomplished by performing the unitary transformation 
U on the spinor Z. 

UZ= (1/~)(1- iul)Z= w, 

which allows us to write Eq. (2.36) as follows: 

(ai +iRifal a+R 2a2)w=A. 2
W, 

(a~ + iRif a2b + R 2a2)w = - A. 2W, 

(2.39) 

(2.40) 

(2.41) 

where A. 2 is a constant of separation. Due to the form ofEqs. 
(2.38) and (2.39), the spinor solution w can be written as 

_ (a (/-l)A (V») (2.42) 
w-\f3(/-l)B(v) , 

where a, {3, A, and B satisfy the equations 

(ai +iRal a+R 2a2-A. 2)a(/-l) =0, (2.43 ) 

(ai - iR al a + R 2a2 - A. 2){3(/-l) = 0, (2.44) 

(a~ +iRa2b+R 2b 2+A. 2)A(v) =0, (2.45) 

(a~ - iR a2b + R 2b 2 + A. 2)B(v) = O. (2.46 ) 

It should be noticed that the above second-order differential 
equations can be rewritten as two systems of coupled equa­
tions as follows: 

(al + iRa)a(/-l) =A.{3(/-l), 

(al - iRa){3(/-l) =A.a(/-l), 

(a2 + iRb)A(v) = iAB(v), 

(a2 - iRb)B(v) = iAA(v). 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

Substituting (2.42) into (2.39) and taking into account the 
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auxiliary condition (2.37), with the relation between a, {3 
and A, B established by the system (2.47)-(2.48) and 
(2.49)-(2.50), we obtain the expression for the spinor Y: 

y=_I_(aB-/3A)(1 +i»). (2.51) 
~ ({3A - aB) (I - i) 

The expression for T(/-l,v) Eq. (2.29), can be written in 
parabolic cylinder and elliptic cylinder coordinates by sub­
stituting the corresponding values of a and{3 [obtained from 
the system (2.30) ]; then we obtain for the parabolic cylinder 
coordinates l6

•
17 that a = /-l, b = v, 

e2iau' = (/-l + ivif)/h (2.52) 

and, therefore, 

T= (1/~){~p, + h + iif~h -/-l}, (2.53 ) 

where 

(2.54) 

On the other hand, for the elliptical cylinder coordinates we 
obtain 16. 17 

a = a cos /-l, b = a sinh v, 

and 

e2iliu' = (cosp, + isinh vif)/h. 

From (2.29), we have 

T = [(cosh v + sinp,) 1121~h ] 

X{~cos /-l + h + iif~ h - cos /-l}, 

with 

(2.55) 

(2.56) 

h = (COS2/-l + sinh2 v) 1/2. (2.57) 

Then, substituting (2.53) and (2.57) into (2.32), we can 
write the solution to Dirac equation (2.18) in the parabolic 
cylinder coordinates (2.34), and elliptic cylinder coordi­
nates (2.35), respectively. In Sec. III, we will find the explic­
it form of the solution to systems (2.47)-(2.48) and (2.49)­
(2.50). 

III. EXACT SOLUTIONS 

The system of equations (2.47)-(2.48) and (2.49)­
(2.50) for the parabolic cylinder coordinates reads 

(d/-l + iR/-l)a = A./3, (3.1) 

(d/-l - iR/-l)/3 = A.a, (3.2) 

and 

(dv + iRv)A = iBA., (3.3 ) 
(dv - iRv)B = iAA.. (3.4) 

The solution of the above two systems can be obtained in 
terms of confluent hypergeometric functions. Substituting 
(3.2) into (3.1), and (3.1) into (3.2), we obtain two para­
bolic cylinder equations: 

(d2/-l+iR+R2/-l2-A.2)a=0, (3.5) 

(d 2/-l- iR + R 2/-l2 - A. 2){3 = 0, (3.6) 

notice that these equations can be obtained directly from 
(2.43) and (2.44) by setting a = p,. The general solution of 
(3.5) is 
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where z = ..{ilf J..l. 
In order to solve (3.6), we observe that Eq. (3.5) is the 

complex conjugate of (3.6), therefore 

Q = Q e + i:l-14M (LA. 2 l.. _ ir) 
P Po 4R ' 2' 2 

+ Qlzeiz214M(iA 2 + l.. l.- _ w). 
P 4R' 2' 2' 2 

Taking into account the relation20 

M(a,b,z) = ~M(b - a,b, - z), 

and Eq. (3.1), we obtain 

Q=Q e -i:l-14M(_iA2 +l.. l.. w) 
P Po 4R 2' 2' 2 

(3.8) 

(3.9) 

+ Q ze -i:l-14M(_LA.2 +1l.- w) (3.10) 
PI 4R' 2' 2 ' 

where the coefficients ao, a I , Po, and P I are related as fol­
lows: 

(3.11 ) 

In an analogous way, we obtain the solution of the system 
(3.3)-(3.4): 

A -A- -irI4M(iA 2 1 .r) 
- oe 4R '"2""2 

+A e- irI4M(il!.2 +l.. l.- ir) 
IY 4R 2' 2 ' 2 ' 

( 3.12) 

B = B e- iy';4M (iA 2 + l.. l.. ir) 
o 4R' 2' 2' 2 

(3.13 ) 

where Y = ~2R v, and 

Ao [{il!.)/~2R ] = BI , Bo [{il!.)/..{ilf] = AI' (3.14) 

Now, substituting the expressions for a, p, A, and B, into 
(2.51), (2.32), we obtain the exact solution to Dirac equa­
tion in parabolic cylinder coordinates in the diagonal (rotat­
ing) tetrad gauge. The wave spinor solution to Dirac equa­
tion (2.4), can be obtained applying the unitary 
transformation S given by Eq. (2.15) as follows: 

tPc = (J..l2 + v) - 1I4S-Y'f"(P, (3.15) 

where S can be obtained from (2.16), giving l9 

S = (l/..ffh){(J..l + h) 112 - i~3 (h - J..l) 112}, (3.16) 

with h = (J..l2 + V)1/2 and ~3 as 

~3 =(~ ;). (3.17) 

Then, substituting the explicit form of t/J, into (3.15) ob­
tained from (2.51) and (2.25), we get that, tPc reads 
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(;:i~ (~:)} 
~< ~ i ( _y~' ) xp i(P,z - EI), (3.18) 

where Yisgivenby (2.32) and (2.51). 
Once we have derived the solution of (2.4), valid for any 

value of J..l and v, we are going to analyze the asymptotic 
behavior of tP c' 

It is easy to see that, the limit x ...... 00 can be obtained in 
the coordinates for the parabolic cylinder (2.34) if we put 
v = 0 and make the limit J..l ...... + 00. Therefore, using the 
asymptotic expression for the confluent hypergeometric 
function for Izl > 1 (Ref. 20), 

M(a b z) e i1TQz - Q ~zD - b --' -'-...... +---, (3.19) 
r(b) reb - a) rea) 

we obtain that the functions YI and Y2 for x ...... 00 take the 
form 

(c
i 
+ DI /.jX)xi). 2/4ke - ikx + (c2 + D2/.jX)x -;;. 2/4keikx, 

(3.20) 

where CI , D I, C2, D2 are constants. That is, the solution takes 
the asymptotic form of a modulated cylindrical wave. 

Now, we are going to solve the Dirac equation in the 
elliptical cylinder coordinates defined by (2.35). Substitut­
ing the values of a and b obtained in Sec. II, Eq. (2.55) for 
these coordinates, we see that the system of equations 
(2.47)-(2.50) takes the form 

(dv + iKii sinh v)A = iAB, 

(dv - iKii sinh v)B = il!.A. 

(3.21 ) 

(3.22) 

Making the change of variable v = 1 w, and substituting 
(3.21) into (3.22), and vice versa, we get 

( 
R 2-2 R 2-2 ) 

dw2 - iRa cos w - -f- cos 2w + -f-- l!. 2 A = 0, 

(3.23) 

( 
R 2-2 R 2 - 2 ) 

dw2 + iRa cos w--f-cos 2W+-f--l!.2 B= O. 

(3.24) 

These are Hill's equations with three terms or Whittaker­
Hill equations which were studied and discussed by Ars­
cott.21 After reducing (3.23) and (3.24) to Ince's equations, 
we have that 

A = e-iRacoswYI + eiRacosWX2' 

B = e-iRacosWXI + eiRacoswY2, 

where YI , Y2, XI ,X2 satisfy the following differential equa­
tions: 

[~ + 2iRa sin w ~ - l!. 2 + 2iKii cos W]XI 2 = 0, 
dw2 - dw - , 

(3.25) 

[~ ± 2iRa sin w ~ - l!. 2] YI,2 = 0, 
dw2 dw 

(3.26) 

where the plus and minus correspond, respectively, to the 
indices 1 and 2 of in X and Y. 

UsingEq. (3.21), and the general solution to (3.25) and 
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(3.26), we obtain that the functions A and B are given by the 
expressions 

A = e - iRa cosh v[ - i rto Cr sinh (ro) ] 

+eiRaCOShV[ __ 1_ f rGr cosh (rv)], (3.27) 
U r=1 

B = e- iRa cosh V [_1_' f rCr sinh ro] 
U r=1 

+ eiRacosh vLto Gr cosh rv]. (3.28) 

where the coefficients Cr and Gr satisfy the recurrence rela­
tions 

2(1 +,1 2 )CI + C2 =0, 

- (i/2)(r - l)RaCr_ I + (r2 + 4,1 2)Cr 

+ (i/2)ka(r + l)Cr+ I = 0, 

2( 1 + A 2)GI + G2 = 0, 

(i/2)(r - l)RaGr_ I + (r2 + 4,1 2)Gr 

- (i/2)ka(r+ 1)Gr+ 1 =0. 

(3.29) 

(3.30) 

The study oftheconvergence of the solutions (3.27), (3.28) 
was carried out by Urwin and Arscott. 22 They show that 
both series are absolutely and uniformly convergent for any 
value of the argument v. 

The system of equations (2.47), (2.48) for the value of 
"a" given by Eq. (2.55) can be solved, after some minor 
changes, using the expressions (3.27) and (3.28). Then, the 
functions a (Il) and {3(Il) are 

a=e-iRaCOS2I1Lto cr sin2ro} 

+ eiRa cos 211 { __ 1_ f rG r cos 2rO }, 
U r=1 

{3 = e - iRa cos 211 { - _1_ f rCr sin 2ro} 
U r=1 

+ eiRacos211 Lto Gr cos 2rO }, 

(3.31 ) 

(3.32) 

where Il = 1T/2 - 20 and the relation between the coeffi­
cients is given by (3.29) and (3.30). 

Then, an exact solution to Eq. (2.8) in the coordinates 
(2.35) can be obtained substituting the expressions (3.27), 
(3.28), (3.31), and (3.32) into (2.51), (2.32), and (2.25). 
In elliptical cylinder coordinates, the unitary matrix trans­
formation (2.15), which relates the solution "'C and "'d' is 19 

s = (1/~){(COSIl cosh v + h) 112 

+ il'.3 (h - cos Il cosh v) 112}, 

with 

h = (cosh2 V + sin21l) 112, 

and l'.3 is given by (3.17). 

(3.33 ) 

Therefore, the solution to Dirac equation (2.4) in the 
Cartesian (fixed) gauge tetrad reads 
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where Pis 

{[ (cos Il cosh v + h) (cos Il + h) ] 112 

- [(h - cos Il cosh v)(h - cos Il)] 112} 

+ ia3{[ (cos Il cosh v + h)(h - cos Il)] 112 

+ [(h - cos Il cosh v) (cos Il + h)] 1/2}. (3.35) 

Finally, we can analyze the asymptotic behavior of the Dirac 
spinor '" c when y goes to infinity and x is zero ("y axis"). In 
the ~oordinates of the elliptical cylinder, it is equivalent to 
consIder v -+ 00 and Il = 0. On the y axis, '" c takes the simple 
form 

where Y is given by (2.51). 
Using the results of Arscott about the asymptotic behav­

ior of paraboidal wave functions and solutions to Whittaker­
Hill equations, it is straightforward to obtain the form that 
the expressions (3.27), (3.28) take when v goes to infinity. 
After substituting the asymptotic form of (3.27), (3.28) 
into (2.51), we get 

Y
I 

= (cosh v) - 112{ C
I 
e - iRa cosh v + C2 eiRa cosh V}, 

(3.37) 

Y2 = (cosh v) - 112{C
3 
e - iRa cosh v + C

4 
eiRa sinh v}, 

(3.38) 

where CI , C2 , C3 , C4 are constants . 
. From (3.37), (3.38), we note that, in the asymptotic 

reglOn y -+ 00, the solution to the Dirac equation in the co­
ordinates (2.35) behaves as a plane wave modulated by a 
factor (cosh v) - 112 (which for great distances is propor­
tional to y - 112). 

As a final remark, we have to say that the new exact 
solutions obtained in the present work could be applied in 
the analysis of scattering processes of relativistic electrons by 
a d.ispersion center with symmetry associated to elliptical 
cyhnder or parabolic cylinder coordinates. 
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An Sp (2) -covariant version of the method of generalized canonical quantization of dynamical 
systems with linearly dependent first-class constraints is proposed. The existence theorem for 
solutions of generating equations of a gauge algebra is proved and the natural arbitrariness in 
these solutions is described. The scheme proposed is shown to be equivalent to the standard 
version of generalized canonical quantization. 

I. INTRODUCTION 

In our previous papers1
•
2 we considered an Sp(2)-sym­

metric version of the method of generalized canonical quan­
tization and the corresponding covariant (Lagrangian) for­
mulation of dynamical systems with linearly independent 
gauge generators. However, the requirements oflocality and 
explicit relativistic con variance of the dynamic description 
are known to lead in the general case to the necessity of using 
linearly dependent (reducible) generators of gauge transfor­
mations, of which antisymmetric tensor fields are a typical 
example. 

Being linearly dependent, gauge generators possess zero 
vectors which, in tum, may have their own zero vectors, etc. 
So, in this case there naturally arises an exact sequence 
whose length, by definition, is the stage of theory reducibi­
lity. 

In the framework of the standard version of generalized 
canonical formalism, the problem of quantization of reduc­
ible gauge theories was solved in Refs. 3-5. The correspond­
ing Lagrangian formulation was proposed in Refs. 6--8. 

The present paper is aimed at formulating an Sp(2)­
symmetric version of the method of generalized canonical 
quantization for dynamical systems with linearly dependent 
first-class constraints. Thereby the results of our previous 
paper! are extended here to gauge theories of any stage of 
reducibility. Note that exceedingly instructive for us were 
Refs. 9 and 10. 

The present paper is organized as follows. The basic 
definitions concerning the reducibility properties of the the­
ory are given in Sec. II. In Sec. III an extended phase space is 
introduced, the Sp(2)-covariant generating equations of the 
gauge algebra along with the necessary boundary conditions 
are formulated, and the unitarizing Hamiltonian of the theo­
ry is constructed. The existence theorem for the solution of 
Sp(2)-covariant generating equations is proved in Sec. IV. 
The natural arbitrariness in the solution of the generating 
equations is considered in Sec. V, after which physical equiv­
alence of the Sp(2) symmetric and the standard versions of 
the method of generalized canonical quantization in the re-

ducible case is established. Finally, Sec. VII presents a brief 
discussion of the alternative version of the Sp(2)-symmetric 
Hamiltonian formulation that generalizes the results of Ref. 
5. 

We use here the following notation. The Poisson super­
bracket in the phase space (PA, QA) is standardly defined 
as 11 

{G F} = 8G 8F _ 8F 8G ( _ l)E(G)E(F) 

, 8QA 8PA 8QA 8PA ' 

where E( G) denotes the Grassmann parity ofthe quantity G. 
The Grassmann parities of the canonical variables P A and 
~ coincide: E(PA) = E(QA) = EA' Derivatives with re­
spect to generalized momenta are always understood as left 
and those with respect to generalized coordinates as right. 
Left derivatives with respect to Q A are labeled by the letter 
"/," i.e., 8J8QA. The Jacobi identity for the superbracket 
has the form 

{{F,G},H}( - )E(F)E(H) + cycl. perm. (FGH) = O. 

The ghost number of the quantity G is denoted as usual by 
gh ( G). Besides, we further define the so-called new ghost 
number that we denote by ngh ( G). Both the types of the 
ghost number obey the additional composition law: 

gh(GH) = gh(G) + gh(H), 

ngh(GH) = ngh(G) + ngh(H). 

The indices of the global symplectic group Sp (2) are labeled 
by lower-case letters a, b, c, ... and assume two values a = 1,2. 
The invariant tensor of the Sp(2) group is defined as 

E"b = ( ~ 1 ~). E"cEcb = 8~. 
Symmetrization over the indices of the Sp(2) group is given 
by 

B {ab} = B ab + B ba. 

Ranks of supermatrices are characterized by a pair of 
numbers r = (r + ,r _ ), where r + (r _) is the rank ofa bose­
bose (fermi-fermi) block of the supermatrix. Similarly, the 
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number of constraints will be characterized by a pair of 
numbers m = (m + ,m _ ), where m + (m _ ) is the number 
of bose (fermi) constraints. We use the following conven­
tions: 

(m + ,m _ ) = (n + ,n _ ){:::?m ± = n ± ' 

(m + ,m _ ) < (n + ,n _ ){:::?m + < n +' m _ = n _ , 

or m+ =n+, m_ <n_, 

or m + < n +' m _ < n _ , 

(m + ,m _ ) + (n +,n _ ) = (m + + n + ,m _ + n _ ). 

II. REDUCIBLE GAUGE THEORIES 

We shall consider, in the Hamiltonian formalism, a dy­
namical system with a finite number of degrees of freedom. 
Suppose in the phase space of initial canonical variables 
1] = (p;.qi), i = 1,2, ... ,n; €(Pi) = €(qi) = €i this system is 
described by the Hamiltonian Ho = Ho( p,q), €(Ho) = 0, 
and by the set of first-class constraints Tau = Tau (p,q), 

€(Tau) =€a
u

' a o = 1,2, ... ,mo =mo+ +mo_. We assume 
that the constraints T a" -1] + O( 1]2). By the definition of 
first-class constraints, there hold the following involution 
relations: 

(1) 

Consider the Jacobian supermatrix of the initial constraints 

1: = {T,1]} I T=O (2) 

and let its rank be equal to 

(3) 

If the condition r 0 ± = mo + is fulfilled, the constraints T - ~ 

are linearly independent and we are dealing with the so-
called irreducible gauge theories. The procedure of quanti­
zation of such theories in the standard version of generalized 
canonical formalism was proposed in Refs. 12 and 13. Then 
the recent paper l by the authors gave formulation of the 
corresponding Sp(2)-covariant modification of this proce­
dure. If (ro+ ,ro_ ) < (mo+ ,mo_ ), then the constraints 
Tau are dependent. In this case the gauge theories are called 
reducible. The linear dependence of T a" means that on the 
constraint surface T a" = 0 there exist vectors 
Z~': = Z~': (p,q), such that 

T za" = T T K a,/3u 
au a. au Po a.' a l = 1, ... ,m l = m l + + ml_ . 

(4) 

Redefining 

we can always choose Z d' such that the relations ofthe first 
stage of reducibility (4) ~re of the form 

T zau =0. 
au a l 

(5) 

There exist such numbers €a = 0,1 that €(Zd') 

= €a" + €a, . Let, on the constraint ~urface, the rank of the 
supermatrix Z d: be equal to 

rank Z~~ I Ta,,=O == (r l + ,rl_ ). 

If the condition m l ± = r l ± ==mo ± - ro ± is fulfilled, the 
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gauge theories are said to have the first stage of reducibility. 
In the general case 

(m l + ,ml _ ) > (r l + ,rl _ ), 

the set Z d: itself is linearly dependent, and therefore there 
exists a set of vectors Z~; = Z~: (p,q): 

zauza, - T A (Juau a - I - + a, a, - (Ju a,' 2 - , ... ,m2 - m 2 + m 2 _ , 
(6) 

and numbers €a, = 0,1, such that €(Z~:) = €a, + €a,' Let, 
in tum -

rank Z~;ITa,,=0==(r2+,r2_)' 

Be redefining Z~' , one can choose the coefficients A a,,/3,, in , . 
(6) to be antisymmetric. We assume that this has been done 
in a way that 

(7) 

If m 2 ± = r2 ± ==m l ± - r l ± ' we are dealing with gauge 
theories of the second stage of reducibility. In the general 
case the set Z~: can be overfull, i.e., 
(m2 + ,m2 _ ) > (r2 + ,r2 ~ ), etc. Thus there appears a se­
quence of equations of reducibility 

Za,-2Z a ,-, = T A(J,,a,-2 
a s _ I a.f Po a.f ' 

as = 1, ... , ms = ms+ + m s_, s = I, ... ,L, (8) 

where 

and 

(9) 

The order of reducibility L is determined by the last of the s 
values for which (ms+ ,ms_ ) = (rs+ ,rs_ ). Irreducible 
theories are characterized by L = O. 

Note that th~ constraints Ta" are not uniquely defined. 
The constraints Tau = 0, 

(10) 

where the supermatrix M'!;;, is invertible, define the same 
surface as Ta" = O. Obviously, the quantities Z~:-' in (8) 

are not uniquely defined either. The arbitrariness that exists 
here can be described by the following relations 

s=2, ... ,L. 

(11) 

(12) 

In (11) and (12) thesupermatricesM~;,s= 1, ... ,L,arein­
vertible D (J"au and D (Ju

a
, possess the properties a. a 2 

(13) 

andD~:a,-"s = 3, ... ,L are arbitrary. We can make use of the 
arbitrariness (10)-(13) in the definition of the constraints 
T a, and the quantities Z~' - , to bring locally T , Z a, - I to 
th~ simplest possible form'. Denote the set of li~~arl;'inde­
pendent constraints contained among the initial constraints 
Ta" by TAu' To this convention there corresponds the divid­
ing a o = (Ao,uo). Then we have 
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(14) 

We now redefine the dependent constraints 
T a" = Ta., - TAoK~ and go over from the constraints Ta" 
to an equivalent set Ta,,: 

Ta" = TPoM~: = (TAo'O), M = (_1 K ~ J (15) 

where the supermatrix M is obviously nonsingular. If con­
straints are chosen in the form (15), Eqs. (5) become 

(16) 

Since the constraints TAo are linearly independent on the 
constraint surface, then from (16) (omitting the tilde over 
Z ~(:) we conclude that 

(17) 

with a certain matrix M !,;o possessing the properties 

MB,,A,, = _ ( _ 1}£S"£A,'M A"B,,. (18) 
a, a, 

Defining Z A,,:Z A" = Z A" - T M B,,A,, we can always 
a, a. a, Bu a,' 

choose Z ~~' = 0 as a solution of Eq. (16), and 

rank Z:" I T =0 = rank Z~, I T =0' (19) 
I a" 1 a" 

In turn, Eq. (19) allows us to divide the index al into two 
groups a l = (AI,a l ) in such a way that the matrix 
Z~':,AI = 1, ... ,m l + + m l _, is reversible on the constraint 
surface and the columns of the matrix Z ~': are linearly de­
pendent 

Z~, =Za.'M~'. (20) a, A, a, 

Redefining now Z~':Z~, = Z~" - Z a., M ~, we may as-a, a, a. A, a,' 
sume, when solving Eq. (5), that Z ~': = O. Finally, making 
allowance for reversibility of the matrix Z ~~ we can obtain, 
by making use of a linear combination, Z~: = 8~':. With 

similar arguments applied to the quantities Z::-' at each 
stage of reducibility, we obtain 

As_I I as _ 1 

Za,_, = -j~-Tt _£"l~s.!. 
a, \0 I 07 as 

s = 1, ... ,£, 

(21) 

Further on we shall say that Ta and Z:'-',s = i, ... ,L, are 
I) s 

chosen in the standard basis if they have the forms of ( 15) 
and (21). It should be emphasized that passing over to the 
standard basis is realized using two operations, namely, mul­
tiplying by a nonsingular matrix and adding the terms van­
ishing on the constraints surface. 

III. Sp(2)-COVARIANT QUANTIZATION OF REDUCIBLE 
GAUGE THEORIES 

We shall consider the gauge theory of the L th stage of 
reducibility. The extended phase space r of such a theory 
can be parametrized by the following set of canonical vari­
ables: 

r = (PA,QA) = (Poqi;& aola,eaola;Aa",1f"'; 

/J}J a,lao,' ·a,.l 
iT a laa "'a ,e ""a la '''a , ~ I s .f I s 

(22) 

a,la .. "a,. 1 L) 
11" ,8 = , ... , , 
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where the momenta & aola'& a laa '''a ,Aa la '''a ,and the co­
ordinates eaola, ea,laa,.· . a" 17'a,la, .. : a" fodn sy~~e;ric tensors of 

corresponding ranks relative to the symplectic group Sp (2). 
The Grassmann parities of momenta and coordinates coin­
cide, and for the newly introduced variables they are defined 
as follows: 

€(ea"la) = € + 1 €(~,,) = € ao' ao' 

€(ea,laa .... a,) = €a, + S + 1 (mod 2), (23) 
ala "'a 2 

E{ 17" ") = Ea , + s{mod ), s = 1, ... ,L. 

Variables of the extended phase space are assigned ghost 
numbers by the rule 

gh{ Pi) = gh{qi) = 0, 

gh{ea"la) = - gh{ & ) = 3 - 20 aola , 

gh{Aa,) = gh(~") = 0, 
h a laa "'a & g (e' ") = - gh{ a,laa .... a) (24) 

S 

= 3 - 20 + L (3 - 20s')' 
s'=1 

gh(17'a,la''''a,) = h(A ) - g a,la,"'a, 

S 

= L (3 - 20s')' 
s'=1 

In connection with the definitions (24) we recall that the 
group indices O,OI'''''Os assume only two values, 1 and 2. 

It would be reasonable to present here an explicit form 
of the normalization of elementary Poisson brackets for ca­
nonical variables realizing symmetric representations of the 
Sp(2) group: 

{ a,la,"'a, 1 } _ ~sSa,,"a,~a., 
17' >'"p Ib .. ·b - U r b"'b Up' ,. I,. Iss 

(25) 

(26) 

The symmetrizer S:'::::' in the rhs of (25) and (26) is de-, , 
fined as 

a '''a 1 8 8 a 
S b''''b''=---'' '--X ''''X D

" 

, , s! 8X b , 8X b, 
(27) 

where X" are auxiliary boson variables. The definition (27) 
immediately implies the properties 

(28) 

(29) 

The key role in the procedure of extended BRST quanti­
zation of reducible gauge theories is played by the generating 
functions na _and K defined on the extended phase space r 
(22). The fermion functions na are solutions of the Sp(2)­
covariant generating equations 

{na,n b} = 0, (30) 

which also satisfy the boundary conditions 

8n
a I = T 8a 

£ a,lb a" b' ue' C=B"=1r=A=O 

8n I = ~br3' a, Ib' 
8~" C=1r=·o/'0=A=0 ' 

(31) 
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where the symbol f!}J Q) implies that from the set of momenta 
f!}J a"la' f!}J a.,laa"··a,'s = 1, ... ,L, one should discard f!}J aula' 

The boson function )}t' satisfies generating equations of 
the form 

{)}t',na} = 0 (32) 

with the boundary condition 

)}t'l c = ". = "-,, =" = 0 = Ho· (33) 

The total unitarizing Hamiltonian H is now defined in terms 
of)}t' and n a by the formula 

H =)}t' + !€ab {{t,6,nb},na}, (34) 

where t,6 is the boson function fixing a concrete choice of 
admissible gauge, gh(t,6) being equal to zero. An essential 
property of the unitarizing Hamiltonian H (34) is its invar­
iance under transformation of the canonical variables (22) 

(35) 

namely, 

(36) 

In (35) and (36) the quantity fLa is an Sp(2) doublet of 
constant Grassmann parameters. Invariance of (36) is ob­
vious from Eqs. (30), (32) and the Jacobi identity for na. 

In the theory with the Hamiltonian H, the generating 
functional of the Green's functions is given in the usual man­
ner by the functional integral 

Z", (J) = J Dr exp{ ~ J dt(PA QA - H + Jr)}. (37) 

The generating equations (30) and (32) for n a and)}t', the 
definition (34) of the unitarizing Hamiltonian H, and the 
definition (37) of the generating functional of the Green's 
functions Z", (J) coincide formally with the case ofirreduci­
ble gauge theories. I Therefore, the corollaries of the invar­
iance of H (36), obtained in Ref. 1, are also valid for reduc­
ible gauge theories in the quantum region. In particular, we 
state that the S matrix corresponding to (37) does not de­
pend on the choice of gauge function t,6 in (34). The invar­
iance (36) of the total HamiltonianH allows the Ward iden­
tities to also be derived for the functional (37). We omit the 
corresponding arguments and calculations and refer the 
reader to Ref. 1. 

IV. THE EXISTENCE THEOREM FOR THE·GENERATING 
EQUATIONS OF GAUGE ALGEBRA 

As in the case of irreducible gauge theories, I the ques­
tion of the existence of solutions of the generating equations 
(30) and (32) satisfying the boundary conditions (31) and 
(32) is the most essential for the quantization scheme. Here, 
we shall prove the existence of solutions of equations (30) 
and (32) in the form of power series of canonical variables 
caula, 1T"'u,ca.laa""a., 1Ta•la .... a·"s = 1, ... ,L. As in Ref. 1, it is con­
venient to control the arising series using the so-called "new 
ghost number"- ngh. To do so, we ascribe the new ghost 
number to all the variables of the extended phase space (22) 
by the rule 
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ngh( Pi) = ngh(qi) = 0, 

ngh(ca"la) = - ngh( f!}J a"la) = 1, 

ngh(1T"'u) = - ngh(A.a,,} = 2, 

h a laa "'a h /7lJ 1 (38) ng (c' I ') = - ng (;:T a,laa""a) = S + , 
h ala "'a h 1 2 ng (1T' ") = - ng (Aasla""a) = S + , 

and require fulfillment of the conditions 

ngh()}t') = 0, ngh(na) = 1. 

s= 1, ... ,L, 

(39) 

We shall seek the solutions of equations (30) and (32) 
in the form of the following expansions in power series of 
ca..)la, ",an, ca.~laal···a~, 1Ta.~lal···a..., S = 1, ... ,L: 

00 

n a = L n:, ngh(n:) = 1, n:_(C,1T)n, (40) 
n=1 

00 

)}t' = Ho + L )}t'n, ngh()}t'") = 0, )}t'n - (C,1T)". 
n=1 

(41) 

We shall first prove the existence of solutions of equations 
(30). The first approximation n~ can be represented in the 
form 

L+ 1 (/) (/) 

n~ = L n~, n~-(f!}J,A.)/, /=2, ..• ,L+ 1, (42) 
1=1 

(I) 

and n ~ is a first-order polynomial in momenta f!}J aula' A.a", 

f!}J a,laa,"'a,' A.a,la""a,. S = 1, ... ,L. The property 
(I) 

ngh ( n ~) = 1, the boundary conditions (31) and the re-

quirement of Sp(2) covariance admit the following most 
(I) 

general form for n ~ : 

(43) 

h N a, Qa.,_, M a,-, 1 L k were sP.,' sa,' sa.,' S = , ... , , are some un nown 
functions of the variables of the initial phase space 

11 = (piJqi), and thematricesNs == (N':,;) are assumed to be 
nonsingular. 

(I) 

One can simplify the structure of n ~ (43) by making 

use of the fact that the canonical transformations are a natu­
ral arbitrariness in the solution of equations (30). We shall 
make a canonical transformation with the generating func­
tion 

X(P',Q) = Xo( p',q;f!}J',C;A. o,1fJ) 

where Xo is the generating function of the identity canonical 
transformation. Note that the canonical transformation 
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( 44 ), first, does not change the structure of the boundary 
conditions (31) and, second, does not change the structure 

(1) (1) 

of !l ~ , except that in the transformed !l ~ we have 

Ns/3a, = (jpa,. 
.f S 

(45) 
(1) 

Consequently, in considering the structure of !l ~ (43), we 

may assume without loss of generality that Eq. (45) is ful­
filled. 

Next we shall find out what restrictions on the matrices 
Qs and Ms in (43) follow from Eqs. (30). Consider Eqs. 
(30) in the first order. Note that in this approximation the 
summands containing no momenta and those linear in mo­
menta must vanish separately. This results in the following 
system of equations containing the matrices Qs and Ms : 

Ta"Qf~, = 0, (46) 

M a,-I= __ S_Qas-I+T Xp"a'-I 1 L 
-a {1 sa'S = ,.," , sa... S + 1 ~, s () S 

Q a,_2 Qa,_1 _ T yp"a,_2 - 2 L 
s- las _ I say; - 130 sa.

f 
' S - , ..• , , 

with some functions Xp"a'-I and yp"a,_2 and 
sa.{ sa.~' 

(47) 

(48) 

xf3.,a,,= _ (_I)Ea"Ep"Xa.P" yf3.,a.,= _ (_I)Ea"Ep"ya,p". 
la, la, ' 2a:! 2a:! 

(49) 

First consider Eqs. (46). From (5) and (11) it follows that 

Q a" = za"R p, + T DP"a., (50) 
la. PI a. Po a. ' 

where R~: is a nonsingular supermatrix, and the functions 
D ~,:a" possess the properties ( 13 ). We shall make a canonical 
transformation with the generating function: 

X(P',Q) = Xo( p',q;f!J' i ,Ct;A i ,~) 

(51) 

where Xo is the generating function of the identity transfor­
mation and the symbols f!J't, ct, At, ~ imply that in the sets 
of momenta and coordinates one should, respectively, omit 
f!J' a,laa,' caolaa" Aa,la" 1T",la,. The canonical transformation 
(51) affects neither the structure of the boundary conditions 

(1) 

( 31 ), nor the structure of the terms 91T in !l ~ [recall that 

N~p, = (j;: (45)], nor the structure ofthe terms ge and A1T 
(1) (I) 

in !l ~, except that in the transformed !l ~ one should put 

(52) 

Consequently, without loss of generality, one can choose 
(52) as a solution of Eq. (46). In the next step, Eqs. (48) 
and (47) with account taken of (52) give 

za"Qa, - T yp"a" 
a. 2a2 - Po 2a2 ' 

Ma" = _ ,za" + T xp"a" 
la, '2 a l Po la.· 

(53) 

(54) 

The solution ofEqs. (53) can be represented in the form [see 
(8) and (12)] 
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(55) 

where R ~~ is a reversible supermatrix. We shall make a ca­
nonical transformation with the generating function 

X(P',Q) =Xo(p',q;9i,c2;.-ti,r) 

+ (_l)Ea,'A ;",f!J'~,laX1':."1T"oIa. (56) 

The canonical transformation (56) affects neither the 
boundary conditions (31), nor the condition (52), nor the 

(1) (1) 

structure of !l ~, except that in the transformed !l ~ one 

should put 

Q~~2 =Z~;, Mf~, = - (1I2)Zd;, (57) 

Continuing this process, we finally establish that in solving 
(1) 

Eqs. (31) one can always choose for !l ~ the following 

expression: 
(1) 

!l a = T Ca"la + E"b9 'fT"" I au czulb 

L 

L ( ba1 ala "'a + €" ;:.r alba"'a 1T'" , 
.~ I .f 

s= 1 

_ [sl(s + 1)]A .. Z a,. - 11Ta.,laa,·· 'a,_ I). 
Q.t_lla, a$_1 as 

(58) 

The expression (58) will be called the canonical form for 
(I) 

!l~ . 

We have proved, in fact, that ifthe solution ofEqs. (30) 
with the boundary conditions (31) exists then it is canoni-

(1) 

cally equivalent to the solution for which !l ~ has the canoni-

cal form (58) for arbitrary choice of the vectors Z::-', 
S = 1, ... ,L. Finally, let us consider the canonical transforma­
tion with generating function: 

X = 9' (M ~ ')a"ca"la + A' (M ~ ')a.,~" + X 
aula Pn au /10 0' 

where Xo is the generating function of identity canonical 
transformation for all the variables excepting f!J' a"la' ea"la, 
Aao '1T"". Under such a transformation the solution of Eq. 
(30) with the boundary conditions (31) becomes the solu­
tion with the boundary condition of the form (31), but 
T~" = Tp"M~:', appears instead of Ta.,' Let us choose the 
matrix M ~:: from (15). Then T~" coincides with the choice 
of the constraints in standard basis. Therefore, any solution 
ofEq. (30) is canonically equivalent to that with the choice 
of constraints in standard basis. The solution ofEq. (30) will 
be called standard, !lst, if it has the canonical form with the 

constraints Ta and vectors z:'- t, S = 1, .. "L, in standard 
u ." 

basis of ( 15) and (21). Above considerations mean that any 
solution of Eq. (30) with the boundary conditions (31) is 
canonically equivalent to some !lst. 

(I) 

The possibility of choosing !l ~ in the canonical form 
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(58) can be formulated as additional boundary conditions to 
equations (30): 

(59) 

(60) 

<5Aas_~:~ .. as_t IC=~=&=A=O 
- __ S_Za.,-t11'a,jaa""a,-t s-1 ,L (61) 
- a , - , ••• 

S+ l' 
We now turn directly to the proof of the existence 

theorem for solutions of equations (30) with the boundary 
conditions (31), (59)-(61). We shall make a canonical 
transformation of nato n~t in the standard basis of ( 15) and 
(21) and choose 

CJJ A,laa,' 'a, s, A,laa,' . a., _ t) + ;;r Ala "'a C - --/LA la "'a 11' • 
s I of s+ 1 .~ I .f-I 

(62) 

Itisa remarkable fact that n~st (62) is in itselfa solution of equations (30) in the first order. Starting now with (62), it is not 
difficult to prove the existence of solutions n~t of (30) for n a in the standard basis. Indeed, suppose we have quantities n:st 
such that Eqs. (30) are satisfied in the nth order. We shall find the expression for {n~t>n~t} in the (n + 1) order 

{n~t,n~t}n + 1 = w{an!}+ 1st + B:b+ l' (63) 

where the functions B :b+ 1 are constructed from n:.t , k<,n, and possess the symmetry properties B :b+ I = B:+ I' The 
operators W a in (63) have the following form: 

wa = T _<5_ E"b9 ~ ~ (E"b9 <5 E"b9 {j 
Au £9 + Aul b <5A + ~ A,lba,"a, <5A + A,lba,"a,_ t (jA 

U Aula Au s_l A,,\",o,··oo., A.flat'··a.~_1 

Through a direct verification we make sure that W a (64) 
form a set of nilpotent anticommuting operators 

w{awb} = O. (65) 

The quantities B :b+ 1 satisfy the equations 

waB:C+ 1 + perm(abc) = 0, (66) 

which follow from the Jacobi identities for n~t calculated in 
the (n + 1) order [ ( 65) should be taken into account] . 

All further steps in the proof are based on the following 
lemma. 

Lemma: Any regular solution of equations 

wax=o, 

w{ax a,· . as} = 0, 

(67) 

(68) 

which vanishes when T = 9 = A = 0 has, respectively, the 
form 

x = !€ab WaWbY, 

X a, "an = w{a, ya,·· ·an}. 

(69) 

(70) 

where y, ya,· 'an 
- t are some functions of the variables of the 
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(64) 

extended phase space (22). Moreover, if the functions X and 
Xa''''an are Sp(2) scalar and tensor, respectively, then the 
functions Yand ya,···an also can be chosen as Sp(2) scalar 

and symmetric tensor. In (68) the functions Xa""an are as­
sumed to be symmetric under permutation of any indices. 
The symbol {a1a2" 'an } in (68) and (70) implies cyclic per­
mutation of the indices a l,a2' ... ,a". The proof of the Lemma 
is given in Ref. 1 and is based on the possibility of construct­
ing operators r a which constitute together with W a

, an al­
gebra of the form 

r{arb} = 0, warb + rb w a = (j'i,N, (71) 

where N is a scalar operator under the group Sp(2). The 
solution of equations (71) is existent, for example, 

<5[ {j L 

ra = 9 Aula {jT - €abAAu ~ + L (9 A,laa,"'a, 
Au Aulb s= 1 
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-AA,laa,---a'-'8A {j ). (72) 
Asla,"'Qs_1 

The operator N, is, in fact, a "conformal generator:" 

8 ) L ( + A A,la, ---a, 8..1 + L f!JJ A,la, ---a, 
A,la,---a, s~ 1 

X {j +AA,la,---a,_, {jA {j ). (73) 
~9 Asla.'··Q.f Asla,"'Qs_1 

Returning to the proof of existence of solutions of equations 
(30) in the standard basis, we note that the functions B ~b+ 1 

possess the properties B ~b+ 1 = 0 when T = f!JJ = A = 0 
(the proof of this fact is quite analogous to the arguments 
presented in Ref. 1). Then by virtue of the lemma, (66) 
implies the existence off unctions y~ + 1 such that 

(74) 

Choosing 

n~+lst = - Y~+I' (75) 

we obtain that Eqs. (30) in the standard basis are satisfied 
already in the (n + 1) order. Using induction we state that 
the solution of Eqs. (30) in the standard basis does exist. To 
complete the proof of the existence theorem for solutions of 
Eqs. (30) with the boundary conditions (31), (59 )-( 61), it 
suffices to note that passing over from the standard basis to 

(I) 

the one in which n f has the canonicalform (58) is realized 

via a canonical transformation. 
The situation with the existence of solution ofEqs. (32) 

with the boundary condition (33) is quite similar. Namely, 
the proof of the existence of solution of Eqs. (32) in the 
standard basis repeats literally the arguments presented in 
Ref. 1. After this, to make sure of the existence of solution of 
Eqs. (32) with the boundary condition (33), it suffices to 
make a canonical transformation and pass over from the 

(I) 

standard basis to the one in which n f has the canonical 

form (58). As na, in these equations there appear solutions 
ofEqs. (30) with the boundaryconditiofls (31), (59)-(61). 

V. ARBITRARINESS IN SOLUTIONS OF GENERATING 
EQUATIONS 

We describe here the arbitrariness that exists in the solu­
tions ofthe generating Eqs. (30) and (32). Let us first con­
sider Eqs. (30). Let na and na be any two solutions of these 
equations with the boundary conditions (59)-(61). Using 
canonical transformations, we pass over to the standard ba­
sis in the solutions na and na

; given this, 

na_n:" na_n:,. 
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n:t and n:t satisfy Eqs. (30) and 
<..V (I) 

n:, = n~,. (76) 

Suppose now that 

n:t = n:t + an~t, (77) 

where an:t is the function whose expansion in power series 
of momenta starts at least with the second order. In the first 
order in c and 1r the function anf.t satisfies the equations 

(78) 

where the operators wa act on any function X by the rule 

(79) 

where n~.t is the first approximation for n:t, and the sign gh 
means that the Poisson superbracket is calculated with re­
spect to the canonical variables that complement the initial 
phase space 1] = (Pi4) to the extended one (22). The Ja­
cobi identity for n:t , n~" X implies that the operators wa 

possess the following nilpotence properties 

We shall now show that any solution of the equations 
w{axb} = 0 

vanishing when TAn = f!JJ = A = 0 has the form 

X a= way 

(80) 

(81) 

(82) 

with a certain function Y. Moreover, if the function xa is 
Sp(2) vector, then the function Y can be chosen as Sp(2) 
scalar. With this purpose we represent the operators wa in 
the form 

L 

w
a = W a + L Wr/) 

I~l 

where w a is defined in (64) and w~/) are operators raising 
by I the degree of momenta of the monomials on which they 
act. We shall solve Eqs. (81) in the form of power series of 
f!JJ, A, TAn. We denote the lower order for X a by X ~ and let it 
be equal to a certain number m. Then from (81) it follows 
that 

(83) 

where X g = 0 for f!JJ = A = TAn = O. Applying our lemma 
to (78), we have 

X~ = Wayo. (84) 

Now 

x a= wayo+X~ =waYo+Xf, (85) 

where X~ has the order not less than m + 1 with respect to 
the powers of variables f!JJ, A, TAn. Thus in the mth order the 
solutions of Eqs. (81) can be represented in the form (82). 
Let Xfo be the lowest order for X~. Then 

w{aXf6 =0, 

and, therefore, 

X~o = Wayl • 

One can see that 
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xa=w"Yo+ way! +1'; =Wa(yO+ y!) +X;, 

(88) 

i.e., solutions of Eqs. (81) can be represented in the form 
(82) with an accuracy already to the terms of order m + 1 in 
g; , A., TAn' Continuing this process, we make sure that the 
statement expressed above is valid. 

Returning to (78), we have 

aOflt = waXlst (89) 

with a certain function X\lt. Repeating literally the corre­
sponding arguments from Ref. 1, we first derive from (89) 
that in the first order the solutions O:t and O:t are related 
through a canonical transformation and then we conclude 
that the exact O:t and O=t are also related through a canoni­
cal transformation. Making then a canonical transformation 

(I) 

from the standard basis to the one in which 0 f has the ca-

nonical form (58), we come to the conclusion that any two 
solutions of Eqs. (30) with the boundary conditions (31), 
(59 )-( 61 ) are related to each other by means of a canonical 
transformation. 

By analogous arguments one can establish that any two 
solutions J¥' and JY of Eqs. (32) with the boundary condi­
tion (33) are related as 

JY = J¥' + (1!2)Eab (Ob,{oa,y)}, (90) 

i.e., the arbitrariness in the solutions of Eqs. (32) (with giv­
en nO) corresponds to the change of the gauge in the total 
unitarizing Hamiltonian. 

We have hitherto discussed arbitrariness in solutions of 
the generating Eqs. (30) and (32) with fixed boundary con­

ditions that are determined by the choice of Tau' Z:: -I, Ho. 
lt is well known that classical dynamics do not depend on 
linear combination of constraints Tan and on addition to the 
Hamiltonian Ho of a linear combination of constraints 

Tan:H ~ = Ho + A "<'Tau' Besides, we have seen that Z:: -I 

from Eqs. (5), (6), and (8) are not uniquely defined [see 
(11) and (12)]. We shall consider how the solutions ofEqs. 
(30) and (32) corresponding to the boundary conditions 
with L, Z:'- I Ro, and T ~ , Z :a,_ \ H ~ are related: 

"""o.so () s 

We denote these solutions by oa, o~a and J¥', J¥", respec­
tively. Note that 0 0 and 0'0 are canonically equivalent to the 
solution of Eqs. (30) Of in the standard basis with 
W (\) 
o ~ = 0 fst (62), and therefore one can state that 0'0 and oa 
are related to each other via a canonical transformation. 
Similarly, the solutions J¥' and ~ are related to each other 
(with fixed 0 0

) through a change in the gauge of the form 
(90). 

Finally, the whole arbitrariness existing in the solutions 
of Eqs. (30) is described by a canonical transformation, and 
the arbitrariness in (32) is transformed into a change of the 
gauge in the unitarizing Hamiltonian. 

Moreover, as in the irreducible case, ! one can show that 
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there exist functions 2 0 , e which form, together with 0 0
, the 

complex 
{Oa,nb} = {2a ,2b } = {oa,e} = {2 a ,e} = 0, 

{oa,2 b } = 8:0. 

VI. EQUIVALENCE OF THE STANDARD AND Sp(2)­
COVARIANT QUANTIZATIONS OF REDUCIBLE 
THEORIES 

We discuss here the connection between the formalism 
of quantization of reducible gauge theories, developed here, 
with the method of Refs. 3 and 4. Recall that the extended 
phase space r of the gauge theory of the L th stage of reduci­
bility is defined in Refs. 3 and 4 in the form 

r= (PA,QA) 

l7Jja, _ 0 1 .-S 1 a, - 0 1 L'-s' 1 s'a, 
;:;r s ,S - t , ••• ,L,II asYL- s ,s - , 'u_, ;11 sasY'- s , 

, 1 L "1 L -' t1'JJs'a.~, 1 L s = , ... , ,s = s,s + , ... , ;C.a"lf s ,s = , ... , , 

s=s',s' + 1, ... ,L), (92) 

where the Grassmann parities and ghost numbers for the 
newly introduced variables are, respectively, equal to 

E(C:') = E( 9~) = Ea , + S + 1 (mod 2),s = O,I, ... ,L, 

gh(c:') = - gh(9~) = s + 1, 

E(e:.) =E(9:') =€a, +s+ l(mod2),s=0,1, ... ,L, 

- gh(e:.) = gh( 9:') = s + 1, 

€(tr,.) =€(A.:') =Ea , +s(mod2),s=0,I, ... ,L, 

- gh( tr,.,) = gh(A. :') = s, 

E(~:) = E(A. ~'a,) = Ea, + s - s'(mod 2), 

gh(~:) = _gh(A.;'a,) 

= - (s - s'),s' = 1, ... ,L,s = s',s' + 1, ... ,L, 

E(C~:) = E( g;~'a,) = Ea, + s - s' + 1 (mod 2), 

_ gh(c.:,) = gh( g;~'a,) 

= s - s' + l,s' = I, ... ,L,s = s',s' + I, ... ,L. 

(93) 

Next, in the entire phase space (92), the fermion 0 and the 
boson J¥' functions are defined as special solutions of the 
following generating equations: 

{O,O} = 0, (94) 

{J¥',O} = O. (95) 

For our further purposes we do not need a detailed knowl­
edge of the structure 0 and J¥' and so we do not discuss them 
here but refer the reader to the original papers of Ref. 3 and 4 
and the review, Ref. 14. 

The first step in establishing the required correspon­
dence consists in identification of the extended phase spaces 
(92) and (22). One of the possible ways of such an identifi­
cation [with allowance for (23), (24), and (93)] is as fol­
lows: 
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(1) for seven 

11"·1_ 
( 

n 

Ca,a""a'+I= CII"'I=C C , ... , = &>2n 
s"'" uS"'" 

m ) 11...1-

C 2...'=-2s-2m+1 C22"' 2 _",,-, -n-; , ..• , - (.; , 

9 a,a,"'a.,+ I = (9 Il...l = 9 s
, .•• ,9 , ... , = c;n, ... , 

11"'1_ 
n 

&> 1 2s - 2m + I&>_ 9 ) 
;:r 2"'2 = A s , .•• ,v 22"·2 - s' 

11 .. ·1-

'" 

( 

n 
11"'1_ 

a,"·a., _ 1l"'1 _ 1 2···, _ 1 2n 
11" - 1T. - /1..5""'11' - /L. s , ••• , 

m ) 11 .. ·1_ 
, ... , _ -2s-2m+ I -22 .. ·2 _-I 

11' - Cs , ... ,1T- - Cs , 

Aa '''a = (A ll "' 1 = 1T", ... ,A ,., = r.n
, ... , 

t .f 11 ... 1-...-
n 

1 &>2s-2m+ 1 1 91) 
/L. 2"'2 = :;r s , ..• ,A22···2 = s' 

11 .. ·1_ 

'" 
1 <n<s/2, s/2<m<s- 1; 

(2) for s odd 

(.~+ 1)/2(.\+ 1)/2 In _ _ 11"'1_ 

C 1···1 2"" =A~ ..... c , ... , = 7?:s-2m+ I. 

22 .. ·2 -s) C =C, 

(96) 

9 a a '''a = (9 11 "'1 = 9 s
, ... ,9 2" = C2n

, ... , 
I 2 $+ I 11 ... 1 ........... 

9 1 ... 1 2..., =7f., ... ,9 , ... ,=A;s-2m+I, ... , 

- - 11'··1-
(.\" + I )/2(.~ + 1)/2 

9 22"'2 = 9 s ). 

l<n«s-1)/2,(s+ 1)/2 <m<s, 

( 

» 
11"·1_ 

a,"'a, 11"·1 1 , .. 2 , 2n 
11' = 11" = /1..5, ••• ,'11" = /L s , •.• , 

ll" '1"':'" ) 2···,_-2s-2m+1 -22"'2_-1 
11' - C , ... ,1T - Cs , 

Ao "'a = (A ll "' 1 = 11's, .. ·,A 2···, = r.n, ... , 
I s 11'" t ......... 

n 

, =2s-2m+ I, m?l) 
/L. 2· .. 2 = t:r s , ••• ,A22· -·2 = ::r s , 

11"'1-
m 

l<n«s-I)/2,(s+ 1)/2<m<s-1. 

(97) 

Note that any other identification of the extended phase 
spaces (22) and (92) differs from (96) and (97) by a ca­
nonical transformation. 

Next, one can see that the function 0 1 satisfies Eq. (94) 
in the same extended phase space as O. But the solutions of 
Eqs. (94) are related to each other via a canonical transfor­
mation. Consequently, one can state that 0 1 is canonically 
equivalent to O. Then the boson function J¥" constructed as 
a special solution ofEq. (95) can differ from the boson func­
tion J¥" satisfying (32) only by the change of the gauge in the 
unitarizing Hamiltonian. The general conclusion is that the 
Sp(2)-covariant quantization of reducible theories is a par-
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ticular case of the standard version that corresponds to a 
special choice of the basis of canonical variables and the 
gauge. 

VII. AN ALTERNATIVE APPROACH TO THE Sp(2)­
COVARIANT QUANTIZATION OF REDUCIBLE GAUGE 
THEORIES 

In addition to the formalism described above, one can 
construct an alternative quantization scheme based on the 
approach to reducible theories developed in Ref. 5. The cru­
cial point of the paper was to represent, by adding new con­
straints, the initial dynamical system in terms of an equiva­
lent system with linearly independent constraints. With this 
purpose it was proposed to extend the initial phase space 
'TJ = (pj>qi) up to ro byway of introducing new (nonghost!) 
canonical variables: 

r 0 = (Pi4;Pa ,qa'H I;S = 0,1, ... , [(L - 1)/2]), (98) 
2s+ 1 

where [a] denotes the integral part of the number a, and 

E( P ) - E(qa2 H I) =E 
a2~+1 - - a 2s +1' 

gh( Pa,,+) = gh(qa2
<+ I) = 0, S = 0,1, ... ,[ (L - 1)/2]. 

(99) 

In the phase space (98), the Hamiltonian of the systemHo is 
defined as 

Ho = Ho, (100) 

i.e., it simply coincides with the initial Hamiltonian. We in­
troduce a set of new constraints Ta , S = 0,1, ... , _ 2, 

[(L - 1 )/2], by the rule (E( Ta,,) = EaJ: 

Tao = Tao + Pa, (ZT)~;" 
T =P za2,-1 

azs a z.v _ I a2s 

(101) 
Here, the superscript "T" implies matrix transposition, and 

the functions Z ~: - I, as functions of the initial canonical vari­
ables, satisfy Eqs. (5) and (8). In Ref. 5 it is shown that the 
set of constraints (101) in the space (98) is linearly indepen­
dent, and it is also established that the standard quantization 
of the system (100) and (101) is equivalent to quantization 
of the initial system, when from among the set of constraints 
Tao one chooses linearly independent ones. 

The dynamical system described in the phase space (98) 
by the Hamiltonian (100) and by the set of first-class con­
straints (101) is irreducible. To quantize this system in the 
framework of the Sp(2)-covariant approach, one should in­
troduce an extended phase space: 

r = (P QA) = (p. qi.p qa2.<+ 1.9 can1a• 
A' " ,. a2s + 1 ' 'lZt,la' , 

(102) 

where 

€(can1a
) = E + 1 E(ca2,la) = E + 1 

au' U2.f' 
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gh(ca"la) = - gh( f)J a"la) = 3 - 2a, 

gh(AaJ = gh(1T"") 

= gh( 1T
a
,,) = gh(Aa,,) = 0, 

ngh(ca"la) = - ngh( f)J a"la) 

= ngh(ca"la) = - ngh( f)J a"la) = 1, 

ngh(1T"o) = - ngh(Aa) 

= ngh( 1T
a
,,) = - ngh(Aa,) = 2. 

(103) 

Then one should use the formalism that was considered in 
detail in Ref. 1. 
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Solutions of the classical SU(2) Yang-Mills theory in (2+1) dimensions 
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A general way of writing the gauge potentials A ; for which the SU (2) Yang-Mills equations 
of motion can be simplified and become solvable is shown. A number of exact solutions can be 
obtained from these simplified equations of motion. 

I. INTRODUCTION 

The Chern-Simons term was first proposed by Deser, 
Jackiw, and Templeton,1 Schonfeld,2 and Jackiw and Tem­
pleton.3 The inclusion of the Chern-Simons term to the 
(2 + 1) -dimensional theory exhibit a number of interesting 
phenomena. With the presence of the Chern-Simons term, 
both electrically charged and neutral vortices acquire finite 
energy both in Abelian and non-Abelian gauge theories.4-7 
However, only numerical solutions are discussed and no ex­
act solutions have yet been found. Also, (2 + 1 )-dimension­
al theories are the high temperature limit offour-dimension­
al theories8

•
9 and hence have physical applications at high 

temperatures. 10 
In this paper, I would like to report on a general way of 

writing the gauge potentials A;, so that the SU(2) Yang­
Mills equation of motion can be simplified and made solv­
able. Some of the solutions of these simplified equations are 
also being discussed. 

In Sec. II of this paper, I will briefly review the SU (2) 
Yang-Mills theory with the Chern-Simons term with the 
necessary notations. Section III will be divided into three 
parts. In this section I will show the general way of writing 
the ansatz after which I will discuss the ansatz in spherical 
coordinates in Sec. III A. Cylindrical coordinates will be 
dealt with in Sec. III B. Here, some new exact solutions both 
in the Minkowski and Euclidean space will be discussed. 
These solutions are complex, possess zero energy, and have 
finite action. Section III C will be on rectilinear coordinate 
and both Euclidean and Minkowski space solutions can be 
obtained from the simplified equations of motion. New exact 
Minkowski space solutions are also obtained. These complex 
solutions are wavelike in nature. I will end with some com­
ments in Sec. IV. 

II. NOTATIONS 

The SU(2) Yang-Mills equations of motion with the 
Chern-Simons term are 

ap, F;v + ~bcA ~ Fp,vc +! SEvp,a F p,aa = 0, (la) 

F;v = ap, A ~ - av A; + ~bcA! A~. (lb) 

The Chern-Simons constant S is real in Minkowski space 
and it is replaced by - is in Euclidean space. The group 
indices a,b,c = 1, 2, and 3. The space indices It, v, a = 1, 2, 

a) Permanent address: Institute of Technology MARA, P. O. Box 41, 01700 
Kangar, Periis, Malaysia. 

and 3 in Euclidean space and It, v, a = 0, 1, and 2 in Min­
kowski space. The gauge coupling constant g = 1. The non­
Abelian electric and magnetic field are given, respectively, 
by 

and 

B f = - !EijFaij; i,j = 1,2. 

The energy-momentum tensor is written as 

T /LV = Fp,aaF~a + gp,v!L' YM' 

where the Yang-Mills Lagrangian density is 

!L' YM = -! F;v F ;:v. 

The Chern-Simons Lagrangian density is 

(2a) 

(2b) 

(3) 

(4) 

!L' cs = -! sEp,va(A ;av A ~ +! ~bcA; A e A ~) (5) 

and the Yang-Mills action with the Chern-Simons term is 

s= f d 3x(!L'YM +!L'cs)· (6) 

Hence the energy density TOO is given by 

(7) 

III. THE GENERAL ANSATZ 

By writing the Euclidean space gauge potentials as 
A A A A ",A" "',.. 

A; = (aa"'l + r""'2)a/L + (aaA I + r"A2)yp, + papp,X, 

(8) 

where aa, jJa, and Y" are the same as the orthogonal unit 
vectors aI" PI" and r 1" the equations of motion (1) can be 
greatly simplified. In the Minkowski space, the gauge poten­
tials take the form, 

A ~ = (aa"'l + 8~"'2)ai + papiX, 

A ~ = (aaA I + 8~ A2), a 3 =p 3 = O. 

(9a) 

(9b) 

Here aa ,jJa and ai' Pi are similar orthogonal unit vectors 
and i = 1,2. 

One restriction on the ansatz (8) is that the correspond­
ing variable of the unit vector PI' must have the dimension of 
length. 

A. Spherical coordinate 

In spherical coordinate, the Euclidean space gauge po­
tentials take the form, 
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A: = (~a"'l + oa"'2)~p + (~aAI + oaA2)Op + ""pX, 

( 10) 

where 

~p = €3pv(xVlp), p = (xi + x~ )1/2, (lla) 

(}A (x X £i p2£ )/pr r = (X2
1 + X2

2 + X23 ) 1/2, P = 3 iUp - V,p , 

v2A - 2XA' -Ax' - (lIp)XA + X2A 

+ is [ "" + (lIp)", - X"'] = 0, 

V2
", + a ~ '" - (ll p2) '" - 2x",' - f/!x' - (lIp) x'" 

+ X2'" - is(A' - XA) = 0, 

a3(A' - XA) = - iSa3",· 

(l7a) 

(17b) 

(l7c) 

( lIb) Here, prime means d I dp and V2 is 

and 

'p = xplr. 

By writing 

"'I = (lIr)q,2(r), "'2 = (llr)q,I(r), 

AI= -(lIr)(q,I(r)-l», A 2=(lIr)q,2(r), 

and 

x=A(r), 

the Yang-Mills equations of motion (1) reduce to 

(-q,; -Aq,2)'-A(q,~ -Aq,\) 

(llc) 

(12a) 

(12b) 

(l2c) 

- (1/r)q,\(1- q,i - q,~) - is(q,~ -Aq,I) = 0, 

( 13a) 

- (lIr)q,2(1 - q,t - q,~) - is( - q,; - Aq,2) = 0, 

( 13b) 

+ (i/2)s(1 - q,i - q,~) = o. ( 13c) 

Putting q,\ = q, and q,z = 0 (Ref. 11), Eqs. (13) reduce to 

A = ( - iI2)S( 1 - lIq,2), (14a) 

q," + ~ SZ (1 - q,4) + q, (1 _ q,z) = o. 
4 q,3 r (l4b) 

Here prime means d 1 dr. 
D'Hoker and Vinet II had solved for Eqs. (14). How­

ever, only numerical solutions are being discussed. This nu­
merical solution is complex. So far no exact solution has been 
found for the differential equations of ( 14). 

B. Cylindrical coordinate 

Here, the Euclidean space gauge potentials become 

A: = (~a"'l + O~"'2)~p + (~aAI + O~A2)Op3 + pappX, 
(15) 

wherepp = xio~/p and "'I' "'2' AI' andAz are functions ofp 
and x3• Here, X is a function of p only. Substituting Eq. (15) 
into Eq. (1), the Yang-Mills equations of motion becomes, 
after setting, 

"'I = "', A I = A, 

"'z=i",+ lip, Az=iA, 

and replacing X by iX, 
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(l6a) 

(16b) 

1 d ( d) 
pdp Pdp· 

By letting the integration constant be zero, Eq. (17c) 
becomes 

A' = XA - is'''· (18) 

Equation (18) solves Eq. (17a) exactly. To simplify Eq. 
(17b), I write 

"'(p,x3) =e- sx,'I1(p) (l9) 

and Eq. (17b) reduced to 

'1''' + ~ '1" - ~ 'I' - 2X'I" - 'l'X' - ~ X'I' + X2'1' = o. 
P pZ P 

(20) 

As a result of Eq. (19), the function A becomes, 

A( p,x3) = e - SX'R( p), (21) 

and Eq. (18) then reduced to, 

R ' = XR - is'll. (22a) 

At this point, it is clear that the function X ( p) is a complete­
ly arbitrary function and Eq. (20) can be solved in a linear 
fashion. One simple solution is 

'1" = (X + IIp)'I'. (22b) 

Hence, together with Eq. (22a), Eq. (19), and Eq. (21), the 
explicit solution is 

'" = icz p exp (f X dp - SX3) , (23a) 

A = (c3 + ~ sc2pZ) exp (f X dp - SX3) . (23b) 

With the solutions of Eq. (23) the Yang-Mills action 
So = f d 3x.!f YM is zero. Hence, the action S is just the 
Cherns-Simons action, 

S = So + f d 3x.!f cs 

= ~ 1 sZcz f exp (f X dp - SX3) d 3x. (24) 

When X is just a negative nonzero constant, that is, X = - b, 
the solution ofEq. (23) has finite action, 

S = ( - czs Ib z)rr, (25) 

when X3 > o. The solution has zero energy and momentum 
density. 

In Minkowski space, the gauge potentials take the form 

A ~ = (~a"'l + o~ "'2)~i + papiX, 

A g = ~aA\ + o~Az. 
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From Eq. (1) the simplified equations of motion can be 
solved in a similar manner and the solution obtained is 

t/J = a1P sin (sxo)exp (J X dP) , (27a) 

(27b) 

where t/J and A are related to t/JIt t/Jz, AI, and Az by Eq. (16) 
and X being replaced by iX. 

A second cylindrical ansatz can also be written, 

A; = (~at/JI +pat/J2)~J.l + (~aAI +paA2)pJ.l +~3~3J.lX. 
(28) 

By writing, 

A I = it/J. A2 = - t/J, 

t/J I = t/J, t/J2 = it/J, 

X = is(n - 1) or isn, 

(29a) 

(29b) 

(29c) 

n being a constant and solving the equations of motion (1), 
this Euclidean space solution is found to be 

t/J=(alp2)e- nsx" a=const. (30) 

The Minkowski space version of this solution (30) can be 
similarly found by using the same substitution ofEqs. (29a) 
and (29b) and X = - ns or s( - n + i). Here, t/J is again 
given by Eq. (30). 

C. Rectilinear coordinate 

The rectilinear coordinate ansatz first appeared in Refs. 
12 and 13. As in Ref. 12, 

A; = (~~t/JI + ~3t/J2)~J.l2 + (~~A1 + ~3A2)~J.l3 + ~f~J.lIX' 
(31) 

and by setting, 

t/J = t/J2 = - t/J3 = (i/i/4)s, (32a) 

(32b) 

(32c) 

the Euclidean space Yang-Mills equation of motion (1) is 
just 

a~A(X2) -!s2A(x2) -2A 3(X2) =0. (33) 

Equation (33) is just the differential equations of the Jacobi 
elliptic functions. 14 The detail analysis of the Minkowski as 
well as the Euclidean space solutions have already been done 
in Ref. 12. 

Time-dependent Minkowski space solution can also be 
obtained when, 

t/J2 ="A 2 = t/J(x2 - xo). 

t/J3 = A3 = - it/J(x2 - xo), 

X=is· 

The gauge potentials then become, 

(34a) 

(34b) 

(34c) 

A; = (~~ - i~3) (~! + s:. )t/J(x2 - xo) + i~f~! s· 
(35) 
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Here, t/J is a completely arbitrary function of (x2 - xo)' The 
electric and magnetic field are given by 

(36a) 

(36b) 

The energy density, momentum density, and action all van­
ishes. 

IV. COMMENTS 

(1) The Bessel functions solutions of Ref. 12 can be 
obtained from the cylindrical coordinate ansatz ofEqs. (15) 
and (26) in the Euclidean and Minkowski space, respective­
ly, when the functionsA2 = X = 0 and t/J2 = lip. 

(2) In arbitrary X function solutions, the equations of 
motion (17) are nonlinear although they can be solved in a 
linear way. As a result, a number of explicit solutions can be 
obtained by using the ansatz of Eqs. (15) and (26), other 
than the solutions given by Eqs. (23) and (27) in the Euclid­
ean and Minkowski space, respectively. 

Examples of the other solutions are when Eq. (20) can 
be solved by writing, 

\{I' ( p) = (y( p) - IIp)\{I( p) + ismR( pl. (37) 

When m = 0, the solution is given by 

t/J= i;1 exp (J Xdp - SX3) , (38a) 

A = (c3 + sc1 1np)exp (J X dp - SX3)' (38b) 

When m = 1, the solution becomes more complicated, as the 
solution now is 

A = ~ 1/2 exp ( J (X - 1 Y ) dp - /i SX3) , 
(1 + ) p(1 + ) 

(39a) 

t/J= (1 + ~)1/2 exp (J (X - p(1 ~ y») dp - /iSX3) 

(39b) 

where 

y = [aKo(sp) + bIo(sp) ]I [aKI (sp) + bII (sp)]; 

a,b = const and Ko, K I , 10, and II are the modified Bessel 
functions. When m takes other values, different solutions 
will be obtained. 

The Minkowski space version of solutions (38) and 
(39) can be obtained in a similar manner with some slight 
modification. 

(3) IncontrasttotheansatzofEq. (15) for which many 
solutions can be obtained, the second cylindrical ansatz of 
Eq. (28) has limited solution. 

( 4) Since the electric and magnetic fields of the ansatz 
( 15) and (16) point in the direction of the null vector 
(~a + i~3 ) in group space, the energy and momentum den­
sity have to be zero. Although the Yang-Mills action is zero, 
the total action can be a finite quantity by suitable choice of X 
and for X3 > O. Hence. the solutions obtained do not corre­
spond to any physical states. At most they may represent 
processes when X3 runs from zero to infinity. 
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(5) Similarly, the electric and magnetic fields of the 
gauge potentials ofEq. (35) are in the direction ofthe null 
vector (8~ - i8~) in group space and the energy density, 
momentum density, and action are zero as a result of this 
group space null vector. 
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The /j expansion, a recently proposed nonperturbative technique in quantum field theory, is 
used to calculate the dimensionless renormalized coupling constant of a A (q; 2) 1 + {j quantum 
field theory in d-dimensional space-time at the critical point defined by ,1.-+ 00 with the 
renormalized mass held fixed. The calculation is performed to leading order in /j and compared 
with previous lattice strong-coupling calculations. The numerical results are good and provide 
new evidence that the theory in four dimensions is free for all D. 

I. INTRODUCTION 

It was our objective in introducing the D expansion to 
devise a scheme that uses perturbative techniques to obtain 
nonperturbative information from a quantum field theory. 
The D expansion relies on an artificial expansion parameter D 
to organize the content of a quantum field theory in the form 
of a conventional perturbation series ~anDn. The parameter 
D is introduced in a self-interacting scalar quantum field the­
ory in the exponent of the self-interaction term: A(q; 2){j + I. 

Observe that when D = 0 the theory is free. As D increases, 
the nonlinear interactions smoothly turn on. Thus the artifi­
cial parameter D interpolates smoothly between a free theory 
and a fully nontrivial quantum field theory like Aq; 4. 

In previous papers we have explained how to apply the D 
expansion to a variety of physical problems. We have shown 
how to expand the Green's functions of a quantum field the­
ory as series in powers of D. The diagrammatic techniques 
are explained in Refs. 1-6. The D expansion is particularly 
suited for quantum field theories having a global supersym­
metry invariance. 7

•
8 The problem of renormalization has 

also been examined.9
- '2 Moreover, D-expansion methods 

have been used to solve ordinary differential equations de­
scribing classical physical systems. 13.14 

The purpose of this paper is to demonstrate clearly that 
the D expansion probes the nonperturbative structure of a 
quantum field theory. We examine a Aq; 4 quantum field the­
ory in d-dimensional space-time in the limit of an infinitely 
deep double well. Specifically, we consider a Lagrangian of 
the form 

X' = 1(Jq;)2 + 1 Jl?q; 2 + AM2q; 2(M2 - dq; 2){j (1) 

in d-dimensional Euclidean space-time, where M is regarded 
as a fixed parameter having dimensions of mass and A is the 
dimensionless coupling constant. We will compute the quan­
tity G = defined as the limit of the renormalized dimension­
less coupling constant GR as the unrenormalized coupling 

constantA approaches infinity, subject to the constraint that 
the renormalized mass M R be fixed. This limit is known as 
the Ising limit. It is a physically significant limit because it 
defines the critical point of the theory. The behavior of the 
theory at this critical point is universal and depends only on 
dimension d of space-time. Furthermore, the neighborhood 
of the critical point is a deeply nonperturbative region of the 
theory because holding MR fixed as ,1.-+ 00 drives J.l2, the 
square of the unrenormalized mass, to - 00. This limit of 
the theory cannot be obtained from a conventional weak­
coupling series in powers of A. 

II. RENORMALIZED COUPLING 

We define the renormalized quantities for the Lagran­
gian X' in (1) in the following manner. From X' we con­
struct the vacuum persistence function Z[J]: 

Z [J] == J Dq; exp{ - J ddX[X' + J(X)q;(X)]}, (2) 

where J(x) is an external c-number source function. Next 
we define the n-point connected Green's functions by 

Wn (xl,· .. ,xn ) ==-- ... InZ[J] .(3) D D I 
/jJ(x l ) DJ(Xn ) J=O 

We construct the renormalized mass from the Fourier trans­
form of the two-point function W2 (p2): 

(4) 

where the wave-function renormalization constant Z3 is giv­
en by 

dW -1(p2) I Z - 1 ____ 2--:::-__ 
3 2 . 

dp p'=O 
(5) 

These are the conventional definitions of the renormaliza­
tion constants in the intermediate renormalization scheme. 
The dimensionless renormalized coupling constant GR is 
constructed by amputating the legs from the four-point 
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function evaluated at zero momentum, multiplying by two 
powers of Z3 to carry out the wave-function renormaliza­
tion, multiplying by M ~ - 4 to make the result dimensionless, 
and mUltiplying by - 1 to give a positive quantity: 

GR =- _M~-4ZHW2-1(0)tW4(0,0,0). (6) 

To the order in which we will be working in this paper 
Z3 = 1 and therefore this formula simplifies to 

GR = - M~-4r4' (7) 

where r 4 is the amputated four-point Green's function eval­
uated at zero momentum, 

(8) 

Let us make the dimension of space-time d explicit. It is 
interesting that one can calculate 

G"" (d) = lim GR (d) 
A_ "" 

(9) 

exactly in two simple cases: When the dimension of space­
time d is 0, G"" (0) = 2, and when d is 1, G"" (1) = 6. We 
give the zero-dimensional argument here. The connected di­
mensionless amputated four-point function for fixed A is giv­
en by 

3[sdx x 2e-
f ]2 - fdx e-f$dx x4e- f 

[sdxx2r f ]2 
where 

.!f = (p.2/2)x2 + A (M 2x 2)'5 + I. 

(10) 

(11 ) 

In the limit as A .... 00 the contribution to these integrals is 
localized at the saddle points ± x o, where Xo satisfies 

Jl2 + UM2(1 + t5)(M2X~)'5 = O. (12) 

Thus, as A .... 00 , the complicated-looking expression in ( 10) 
simplifies to 

G"" (0) = 2.- (13) 

The calculation of G "" (1) is slightly more complicated. The 
proofthat G"" (1) = 6 is given in Ref. 15. 

For dimensions other than 0 or 1, one can determine 
G"" (d) numerically for all values of d between 0 and 4 using 
a strong-coupling lattice calculation. This calculation is de­
scribed in Ref. 15. From a plot of G"" (d) vs d given in this 
reference (see Fig. 1) one sees that G"" (d) rises monotoni­
cally, taking on the approximate values G "" (V = 3, 
G"" (~)=1O, G"" (2)=15, and G"" (3)=30. Note that 
G "" (d) reaches a maximum near d = 3.5 and then de­
creases. The numerical calculation becomes less accurate as 
d increases; however, the results are consistent with the con­
clusion that G"" (4) = O. Our goal in this paper is to show 
how one might reproduce these results using the t5 expan­
sion. 

III. EXPANSION CALCULATION 

Our starting point for the calculation is the t5 expansion 
to second order of the renormalized mass MR in d dimen­
sions taken from Refs. 2 and 3: 

M~ = m 2 + t5UM 2S + At52M2(S2 - 1 + "l(~» 
+ A 2t52(4M4/m2)a(0) (JI - J2), (14) 

where 
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d 

FIG. 1. The values of G ~ (d) found in Ref. 15 (solid line) compared with 

those found here (dashed line). 

and 

S= ",q) + 1 + In(2M 2
-

da(0)/m2 -d), 

m 2 =Jl2 + UM 2, (15a) 

(15b) 

(15c) 

In (15b) we have included the effects of wave function renor­
malization. Here "'(D = 2 - r - 21n 2 = 0.036 49 is the 
digamma function evaluated at ~ and a (x) is the dimension­
less propagator in d-dimensional coordinate space. In terms 
of the dimensionless coordinate x, 

a(x) = (21T)-d/2(X)I-dI2KI_d/2(X), (16) 

and, for O<.d < 2, 

a(O) = (41T) -d/2r(1-d/2). (17) 

When d> 2, a (0) is infinite, and (14) must be regulated, for 
example, by a momentum cutoff. The four-point function r 4 

in second order in t5 is given in Refs. 2 and 3: 

r = - 4At5M
2 

[1 + t5S + At5M
2 

a(O) 
4 a(0)(m2)d-2 m 2 

X (311 + 812 - 213 )]' (18) 

where 

(19) 

(20) 

(21 ) 

Bender et al. 2723 



                                                                                                                                    

In preparation for taking the limit A. -> 00, we rewrite ( 14) and (18) in the forms 

M2 = m2[1 + U8M
2
S/m2 ] 

R 1 _ 8(S2 - 1 + tf(~)/(2S) - 28A.M 2.6.(0) (JI - J2)/(m2S) , 
(22) 

(23) 

Forming the (1,1) Pade approximant in this manner is a 
standard procedure that is conventionally used to take the 
continuum (zero-lattice-spacing) limit of a lattice strong­
coupling expansion. 16

,17 We now take the ..1.-> 00 limit of 
(22) and (23) and find, using (7), that 

M~ =m2[I-S2/(.6.(0)(JI -J2))] , (24a) 

and 

G (d) = 4(1-S2/[.6.(0)(JI -J2)])d12-2 (24b) 
00 (.6.(0»2( _ 311 - 812 + 213 ) 

Note that this result is independent of 8, which is consistent 
with the phenomenon of universality at the critical point. 

We observe that the scale mass M is not determined. Of 
course, when 8 = 1 the Lagrangian .5t' in ( 1 ) depends on the 
dimensional parameter g = A.M4 - d. However, to any finite 
order in 8, the 8 expansion at 8 = 1 depends on M 2 as well as 
g. Therefore a condition is required that determines the val­
ue of M 2. Recently, Jones and Monoyios 18 applied the princi­
ple of minimal sensitivity originally enunciated by Steven­
son l9 to the 8 expansion at 8 = I, and obtained good 
numerical results in low dimensions. The principle of mini­
mal sensitivity determines M 2 by setting the derivative of the 
8 expansion with respect to M2 equal to zero. Here, we find 
by explicit calculation that for d = 0 and 1, Goo is flat as a 
function of S in the vicinity of S = O. Therefore we fix M2 by 
the very simple condition S = O. This is a very reasonable 
result, for then from (24a) 

(25) 

which forces.u2 -> - 00, consistent with the double-well lim­
it. For d>2 the condition S = 0 is required to make M~ 
finite as the momentum cutoff goes to infinity. 

In zero dimensions, the integrals are rather easy to 
evaluate, and we find that 

Goo (0) = 4/3tf'(~) = 1.42633, (26) 

which agrees with the exact answer to 29%. In one dimen­
sion, the evaluation is a little more difficult: 

Goo (1) = 16[ -¥;(3) + 3rln2 

+ 64G - r12 - 58] -I = 4.458 48, (27) 

where; is the Riemann zeta function and G = 0.9159 66 .. .is 
Catalan's constant. This result agrees with the exact answer 
to 26%. The calculation at d = 2 is performed by allowing d 
to approach 2 from below. In this limit the contributions 
from 12 and 13 vanish, and the contribution from II comes 
from the first term in the expansion of the logarithm in the 
integrand. The result is 

Goo (2) = 81T13 = 8.377 58, (28) 

which is about 40% low. 
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More generally, for 4 > d>2 this feature persists. In par­
ticular, 

.6.(0)211 = - 2 f ddx .6.(X)2 

= - dx xK (X)2. 4 100 

red 12)2d~/2 0 d12 - I 

(29) 

Evaluating (29)" and substituting this into (24) we find that 

Goo (d) = ired 12)2d~/2 

X[sin«dI2-1)1T)/«d/2-1)1T»), 

(30) 

For d = 2 this reproduces our previous result, 81T/3. For 
d = 3 we find Goo (3) = 161T/3, about 40% low. For d = 4 
we see that .6.(0)211 diverges and therefore Goo (4) = O. 
Thus we see that the 8 expansion has provided additional 
evidence for the triviality in four dimensions of all theories of 
the class (1). 

IV. CONCLUSION 

These results are extremely gratifying and provide 
strong motivation for further calculations that should be 
done and that we shall try to do in the future. The next step 
is, of course, to improve the numerical results by performing 
a higher-order calculation of Goo (d). This would require 
calculating M ~ and r 4 to at least third order in 8. This has 
never been done. Such calculations are extremely difficult 
except in zero-dimensional space-time. 
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The characteristic functions and the invariants of supermatrices are studied. It is shown that 
the Euclidean algorithm is useful in obtaining a system of invariants. 

I. INTRODUCTION 

The theories oflinear algebra and analysis over a Grass­
mann algebra have been developed and are a base of the 
theory of supermanifolds, Lie supergroups, and Lie superal­
gebras,I-5 which are extensively used in modern physics.6

•
7 

Especially, representation of supergroups and superalgebras 
plays an essential role in supersymmetric field theory. As a 
foundation of the representation theory, we study the eigen­
value problem of supermatrices. In our previous paper, 8 we 
introduced the notions of the eigenvalue and the eigenvector 
of supermatrices and studied their basic properties. In this 
paper, we study the characteristic functions and the invar­
iants of supermatrices. The invariants of some supermatrices 
have found an application in statistical mechanics.9 

In Sec. II, we recall the results of Ref. 8. In Sec. III, we 
define the characteristic function h M (X) of a supermatrix 
M, a super equivalent of the characteristic polynomial of an 
ordinary matrix. The function h M (X) is a rational function 
in X and its zeros and poles are the eigenvalues of M of the 
first kind and of the second kind, respectively. Therefore, if 
we can get an irreducible expression/(X)/g(X) of hM(X) 
then the coefficients of /(X) and g(X) are the fundamental 
symmetric functions of the eigenvalues of the first kind and 
the second kind, respectively, and they are all invariant un­
der the transformation M ...... UMU - I by invertible superma­
trix U. In Sec. IV, we give an efficient method to compute the 
invariants by employing the Euclidean algorithm. 

II. PRELIMINARIES 

We recall some basic definitions and results given in 
Kobayashi and Nagamachi. 8 Let A = Ao Ell Al be a Grass­
mann algebra over the complex numbers C, where Ao (resp. 
AI) is the even (resp. odd) part of A. As a subalgebra, Cis 
naturally contained in A and is called the body of A. Any 
element aEA is a sum of the body aEC and the nilpotent 
element s (a) called the soul. Then the mapping - is a homo­
morphism of A to C. 

Let p and q be non-negative integers and put n = p + q. 
A (p,q) supermatrix M is an n X n matrix over A such that 
M = (~ ~) , where A (resp. D) is ap Xp matrix (resp. qX q 
matrix) over Ao andB (resp. C) isapxqmatrix (resp. qXp 
matrix) over A I' The body M of M = (mij) is the matrix 
(mij) over C. An even (resp. odd) vector is a column 

x = (XI , ... ,Xp'Xp + I , ... ,Xn) T, where X; is in Ao (resp. Al ) for 
i = 1, ... ,p and in AI (resp. Ao) for i = P + 1, ... ,n. The body 
x of X is the vector (XI , ... ,xp'xp + I , ... ,xn) T. 

If Mx = AX for AEAo and X is a vector such that x#O, A 
is called an eigenvalue of M and X the eigenvector corre­
spondingtoA. Ifx is even (resp. odd) we say A is an eigenval­
ue ofthe first (resp. second) kind. 

The main result of Ref. 8 is the following theorem, 
which is an elaboration of a theorem by Berezin.2 

Theorem 2.1: Let M = (~ ~) be a (p,q) supermatrix 
such that the eigenvalues a I , ... ,a p of A and the eigenvalues 
81, ... ,8q of jj are all different. Tp.en M has_ eigenvalues 
/?I , ... ,{3p an~ YI, .. ·,Yq such that {31 = a l , .... {3p = ap and 
YI = 81 , .. ·,Yq = 8q. Moreover, the eigenvalues {31'''',{3P 
(resp. YI , ... ,Yq ) are of the first (resp. second) kind, and 
there exists an invertible supermatrix U such that 
UMU - I = diag({31 , ... ,{3p'YI , ... ,Yq). 

III. CHARACTERISTIC FUNCTIONS 

In this section we consider the super equivalent of the 
characteristic polynomial. In the super case it is not a poly­
nomial but is expressed as a ratio of polynomials. Because 
our ring Ao [X] of polynomials is not an integral domain, 
the ratio is an element of the quotient ring, the localization of 
Ao [X] at the minimal prime ideal. For a polynomial 

j(X) =aOxn+alxn-1 + ... + anEAo [X], 

the body jis defined by 

f(X) = aoxn + alxn - 1+ ... + an' 

Proposition 3.1: The set f!JJ = s(Ao) [X] is the smallest 
prime ideal of Ao [X]. It is the set of nilpotent elements of 
Ao [X] and its complement Ao [X] - f!JJ is the set of non­
zero divizers of Ao [X]. 

Proof: The proof is easy. 
Let 

A(X) = A[X]"", = {f IgVEA[X ],gEAo [X ],gElf!JJ} 

be the ring of quotients of A [X]. The addition and the multi­
plication of A(X) are defined in a usual way, and 
J.Igl =/zlg2inA(X)ifandonlyifJ.g2 =gl/zinA[X].A 
polynomialjEA [X] is invertible iff #0, because/ - fis nil­
potent. The even part 

Ao (X) = Ao [X 1.9 = {f Igl!.gEAo [X ],gElf!JJ} 
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of the Z2 -graded algebra A(X) is the localization of Ao [X] 
at 9. Let h (X)eAo (X) and aeAo. If there is an expression 
heX) =f(X)/g(X) such that g(a)-:;l:O, then the value 
h(a) of h at a is defined to bef(a)/g(a), otherwise the 
value h(a) is not defined. The value h(a) does not depend 
on the expression of h (X). In particular, we say that aeAo is 
a zero of h if h (a) = O. When h is invertible, a zero of h - I is 
called a pole of h. 

For a supermatrix M, the superdeterminant 
sdet(XE - M) of XE - M, which is an element of Ao (X), is 
called the characteristic (rational) function of M and is de­
noted by h M (X). We call M separable if it satisfies the as­
sumption of Theorem 2.1. 

hM(X) = det(XE - A - B(XE - D) -IC) 
det(XE-D) 

Theorem 3.2: Let M be a separable supermatrix. Then 
we have 

hM(X) = (X - PI)'" (X -Pp)/(X - rl)'" (X - r q), 

where PI , ... ,pp (resp. rl , ... ,rq) are the eigenvalues of M of 
the first (resp. second) kind. 

Proof: From the multiplicative property of superdeter­
minants, we have 

sdet(XE - M) = sdet(XE - UMU -I), 

for an invertible supermatrix U. Hence, by Theorem 2.1 we 
may assume M is a diagonal matrix, and the assertion is 
clear. 

Let M = (~ ~ ). Then 

det «det (XE - D»(XE - A) - B(det(XE - D»(XE - D) -IC) 
=--~--~----~~----~--~~~--~~----~--~ (3.1) 

det(XE - D)P+ I 

det(XE-A) =----------'--------------det(XE - D - C(XE - A) -IB) 

det(XE - A)q+ I 

det«det(XE - A»(XE - D) - C(det(XE - A»(XE - A) -IB) 
(3.2) 

Suppose M is separable. The eigenvalues of M of the first 
kind are obtained as the zeros ofthe numerator, 

det«det(XE - D»(XE - A) - B(det(XE - D» 

X(XE-D)-IC), 

of (3.1) obtained by the Newton method starting with the 
zeros of det(XE - A) -. On the other hand, the eigenvalues 
of the second kind are obtained as the zeros of the denomina­
tor 

det«det(XE - A»(XE - D) - C(det(XE - A» 

X (XE -A) -IB) 

of (3.2) obtained from the zeros of det(XE - D) -. 
We say f and g in Ao [X] are coprime and write as 

(j,g) = 1, if the ideal generated by f and g is the whole ring 
Ao [X]. ForheAo (X) an expression h =f /gis called irredu­
cible, if (f,g) = 1. The expressions (3.1) and (3.2) are not 
irreducible. In the sequence of this section we will give the 
irreducible expression of the characteristic function h M 

(Theorem 3.9). 
Lemma 3.3: Letfandgbe in Ao [X]. Thenfandg are 

coprime in Ao [X ] if and only if I andg are coprime in C[ X] . 
Proof Suppose I and g are coprime and let p and q be in 

C[X] such that pi + qg = 1. Then pf + qg = 1 + r with 
re9. Hence, 

(P/(l + r)}f + (q/(l + r»g = 1, 

wherep/(l + r) =p(l- r+ r2 - ... ) and q/(1 + r) are 
in Ao [X], implying (f,g) = 1. The converse is clear. 

Lemma 3.4: Letj, g,it ,andg l be in Ao [X] and suppose 
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I 
]=]."g=gl and(j,g) = 1. Iffg=itgl thenit = (1 +r)j, 
gl = (11(1 + r»g with re9. If moreover, f and it are 
monic thenf = it and g = g I' 

Proof: Since (j,gl) = 1 by Lemma 3.3, we have 
pf + qgl = 1 for p, qeAo [X]. Hence, 

it = P./fl + qglit = (Pit + qg)j, 

where (pfl + qg) - = 1. Thus, 

fl = (1 + r)f and gl = (11(1 + r»g 
with 

r=pit+ qg-le9. 

Here, if f and fl are monic, then r = 0 and consequently 
f=it andg=gl' 

Corollary 3.5: If heAo (X) has an irreducible expression 
f / g with g monic, then this expression is unique. 

The following is a key lemma for our discussion. 
Lemma 3.6 (Hensel's lemma): Letfandgbe in Ao [X] 

such that (f,g) = 1 and let r be in 9 . Then there exist r I and 
r2 in 9 such thatfg + r = (f + rl )(g + r2 ). 

Proof: We proceed by induction on the nilpotency of r. 
Let p and q be such that pf + qg = 1. Then 

fg + r = (f + rq) (g + rp) - r2pq. 

Since if + rq,g + rp) = 1 by Lemma 3.3 and the nilpotency 
of r 2pq is smaller than that of r, we have r; and r; in 9 
satisfying 

fg + r = (f + rq + r; ) (g + rp + r; ) 
by the induction hypothesis. 

Lemma 3.7: Let f be a monic polynomial in Ao [X ] and 
r be in 9. Then there is a monic polynomial geAo [X] and 
te9 such thatf + r = g(1 + t). 
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Proof Let I be the ideal of Ao generated by the coeffi­
cients of r. Since I is a nilpotent ideal we proceed by induc­
tion on the nilpotency m of I. By the division algorithm 
r = qf + rl , q, r l El [X] with deg(rl ) < deg(/). Therefore, 
we have f + r = (j + rl + rz ) (1 + q), where 
rz = - r l q( 1 + q) - I. Here,f + rl is monic and the coeffi­
cients of rz = -rlq(1-q+i- ... ) are in [z and the 
nilpotency of the ideal generated by the coefficients of rz is 
smaller than m. By induction hypothesis we have 
f + r l + rz = g(1 + t') with monic g and t 'Efll. Then let­
ting t= t' + q + t'q, wehavef+ r=g(1 + 1). 

By this lemma we get the following elaboration of 
Lemma 3.6. 

Corollary 3.8: Let f and g be monic polynomials in 
Ao [X] such that (J,g) = 1 and let r be in fll such that 
deg(r) < deg( fg). Then there exist r l and rz in fll such that 
fg+r=(f+rl)(g+rz ), deg(rl ) <deg(f), and 
deg(rz ) <deg(g). 

Theorem 3.9: Let M = (1: ~ ) a supermatrix. Letf and g 
be the characteristic polynomials of A and D, respectively. 
Suppose (J,g) = 1, then the characteristic function hM of M 
has a unique irreducible expression: 

hM = (j + r)/(g + t), 
where r, tEfll, deg(r) < deg(/), and deg(t) < deg(g). 

Proof' The numerator of (3.1) is equal to 

det(g(X) (XE - A) - Bg(X) (XE - D) - IC) = gl'f + u, 

where uEfll and deg(u) <deg(g"j) =p(q+ 1). Thus we 
have hM=(g"f+u)Ig"+I. Similarly, we have 
hM =fq+ II(jqg + v), where VEfll and deg(v) <q(p + 1). 
By Corollary 3.8, 

hM = (g" + t') (j + r)lg" + 1 =fq+ I/(jq + r')(g + t), 

where f', r, r', tEfll, deg(t') <pq, deg(r) <p, deg(r') <pq, 
and deg(t) < q. Thus 

f q+ Ig"+ 1= (j + r) (jq + r') (g + 1) (g" + t '). 

By Lemma 3.4 we find r+ 1 = (j + r) (jq + r') and 
g" + I = (g + t) (~ + t'), and consequently 
hM = (j + r)/(g + 1). 

IV. INVARIANTS OF SUPERMATRICES 

In this section we suppose that Ais the Grassmann alge­
bra generated by an infinite number of generators VI , Vz , ... , 
Vn' ... over C. We consider the superspace JI consisting of 
(p,q) supermatrices over A: 

JI = A~2+l $Afpq 

= {(xij'Yk/,5il''/]kj) IXij'Yk/EAo,5il' 

'/]kj EA I ,l <.iJ<.p, 1 <.k,f,;;:;,q}. 

Let A [x,Y,5, '/]] denote the ring of polynomials in pZ + qZ 
commutative indeterminates xij' Yk/ and 2pq anticommuta­
tive indeterminates Sil' '/]kj over A. A polynomial in 
A [x,y,s,'/]] defines a polynomials function on JI valued in 
A, and different polynomials define different functions be­
cause A is infinite dimensional. In this sense we identify 
polynomials in A [x,y,S, '/]] and polynomial functions of JI. 
For a polynomial (J(x,Y,s,'/])EA[x,y,s,'/]] the body ~EC[X,y] 
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is the polynomial obtained from (J(x,y,O,O) by replacing all 
its coefficients by their bodies. Let 

A(x,y,s,'/]) = {(JIt/!lifJEA[x,y,s,'/]],t/-'EAo [x.y], 

t/IEis(Ao )[x,y])} 

be the ring of quotients of A[x,y,s,'/]]. Then A(x,y,s,'/]) is 
canonically isomorphic to the Grassman algebra 
C(x,y) [v,s,'/]] generated by 

VI ,Vz ' .... vn'· ... SII ,SI2 '''',Spq,'/]II ''/]IZ ''''''/]qp 

over the rational function field 

C(x,y) = C(xll 'X I2 '· ... Xpp 'yll 'YI2, ... ,yqq)' 

For (XO,yO,S 0,'/]0) EJI. if there is an expression <I> = (Jlt/! 
such that ip(xo.yo) = t/!(XO,yo) - #0, then the value 
cf>(XO,yO,so,,/]o) of cf> at (XO,yo.so,,/]o) is defined to be 
(J(xO,yo.so,,/]o)It/!(xO,yo). otherwise cf>(XO,yO,so,,/]o) is not 
defined. In this way we identify elements of A (x,y,s.'/]) and 
rationalfunctions on JI valued in A. 

A rational function cf> onvR' is called invariant, iff or any 
MEJI such that cf>(M) is defined and for any invertible su­
permatrix U, cf>( UMU - I) is also defined and 
cf>(M) = cf>( UMU -I) holds (see Chap. 1.5 of Ref. 10 for 
the invariants of ordinary matrices). 

Let M = (~ ;) be the matrix whose elements are the 
indeterminates xij' Yk/, Sil' '/]kj' Then M is a (p,q) superma­
trix over A (x,y,s,'/]) = C(x,y) [v,s,'/]]. The discussion in the 
proofs of the lemmas in the preceding section is valid. even if 
we replace the field C by C(x.y) and the Grassmann algebra 
A by C(x,y) [v,s,'/]]. Especially Theorem 3.9 is valid for su­
permatrices over A (x,y,s, '/]). Since our supermatrix M satis­
fies the condition of Theorem 3.9, the characteristic function 
h M of M has a unique irreducible expressionl;g with monic 
polynomials], gEA(x,y,s.'/])o[X]. Suppose l=xp 
+UIXP-I+···+ Up and g=xq+uP+IXq-I+ ... 
+ up + q' These coefficients U j are elements of A (x.y,s,'/])o. 

rational functions on JI of even grade. Let Ube an invertible 
supermatrix over A. By the multiplicative property of super­
determinants we have 

hM = sdet(XE - M) 

= sdet(UXE -M)U -I) = hUMU -" 

Therefore, all the coefficients 0'1 , ... ,up + q are invariant. 
Theorem 4.1: A rational function cf> on JI is invariant if 

and only ifcf> is a rational function of 0'1 , ... ,up + q' 

Proof Let cf>EA(x,y,s,'/]) be an invariant rational func­
tion and MEJI be a separable supermatrix such that cf>(M) 
is defined. Then M is diagonalized to 
diag(a l , ... ,ap ,/31 , ... ,/3q) and we have 

cf>(M) = cf>(diag(a l , ... ,ap ,/31 , ... ,/3q» 

(4.1 ) 

Here, 

'I' (z,w) = cf>(diag(zi .... ,zp,w1 , ... ,wq» 

is a rational function in ZI , ... ,zp and WI , ... ,Wq over A. It fol­
lows from the invariance of cf> that for any point (a,b) EO + q 

at which 'I' is defined and for any permutations 1T and T 
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'1'(°1 , ... ,op,bl , ... ,bq) = '1'(0,,(1) , ... ,0,,(P) ,br(1) ,. •• ,br(q) ), 
(4.2) 

holds. Since 'I' is an element of A (z,w) = C(z,w) [v], 'I' is 
expanded as 

'I'(z,w) =l:i,< ... <i 'l'i ... i (z,w)v i ···V,·, 
,. I n 1 n 

with 'l'j ... j EC(Z,W). Here, '1', .... ,. (z,w) are invariant under 
I n 1 ,. 

the permutations of ZI""'Zp and the permutations of 
WI , ••• ,wq by (4.2). Therefore, 'I' is a rational function \ii of 
fundamental symmetric functions ul "",uP ' of ZI , ... ,zp and 
up + I , ... ,up + q of WI , ••• ,wq by the fundamental theorem of 
symmetric functions. By (4.1) we have 

<I>(M) = 'I'(a,{3) = \ii{ul (a,{3), ... ,up +q(a,{3)). 

Since U, (a,{3) = O'i (M) by Theorem 3.2, we have 

<I>(M) = \ii{O'1 (M)"",O'p+ q (M». (4.3) 

Because (4.3) holds for any separable supermatrix M at 
which <I> is defined, <I> is equal to \ii (0'1 , .•• ,O'p + q) as an ele­
ment of A(x,y,5"YJ). 

The converse is obvious because 0'1 , .•. ,O'p + q are invar­
iant. 

The invariants O'p ... ,O'p + q are rather complicated ra­
tional functions on JI. We are going to find better invar­
iants. 

Let Y = A(x,Y,5,1J)0 denote the ring of rational func­
tions on JI of even grade. As we have seen above,] and g are 
monic polynomials over Y. 

Suppose deg(/) >deg(g), then the Euclidean algorithm 
in Y [X] goes as follows: 

I = tog + r l , deg(rl ) = deg(g) - 1 = q - 1, 

g=tlrl +r2, deg(r2 ) =deg(rl ) -1, 

r l = t2r2 + r3 , deg(r3 ) = deg(rz) - 1, (4.4) 

rq _ 2 =fq _ 17q _ 1 +rq , deg(rq) =0, 

rq_ 1 = tqrq, 

where ri is the rj divided by its leading coefficient. Note that 
deg(tj) = 1 for i = 1, ... ,q, and rq = 1 because rq is a con­
stant. Now we define al , ... ,{jp + q as follows: For I <J<.p - q, 
{ji is the coefficient to of degree deg(to) - i = P - q - i, and 
forj = 1, ... ,q, {jp_ q+ 2j- I is the leading coefficient ofrj , and 
{j p _ q + 2j is the coefficient of tj of degree O. These are rational 
functions of 0'1 , ... ,O'p + q and so they are invariants. In partic­
ular, - {jl is the well-known supertrace of M. 

Let F = gPf + u be the numerator and G = gP + I be the 
denominator of (3.1) [or F = f q + I be the numerator and 
G = rg + vbe the denominator of (3.2)], wherefandgare 
the characteristic polynomials of A and D, respectively. 
Here, F and G are also considered to be elements of Y [X] . 
The proof of Theorem 3.9 shows the existence of monic poly­
nomialHsuch thatF= H}and G = H·g. Multiplying both 
sides of the equations in (4.4) by H, we have 

F=toG+Hrl' 

deg(Hrl ) = deg(G) - 1 = (p + I)q - 1, 

G = tlITrI + Hrz, deg(Hr2) = deg(Hrl ) - 1, 

ITrI = t2ITr2 + Hr3, deg(Hr3) = deg(Hrz ) - 1, 
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ITrq_ 2 =tq_IITrq_ 1 +Hrq, deg(Hrq) =pq, 

ITrq_ I = tqITrq. 

This turns out to be the Euclidean algorithm starting with F 
and G, and we have the following theorem. 

Theorem 4.2: Let F and G be as above, and apply the 
Euclidean algorithm to F and G: 

F= ToG+RI' 

deg(R I ) = deg(G) - I = (p + l)q - 1, 

G = TJi.1 + R 2 , deg(R2 ) = deg(R I ) - I, 

RI = T2R2 +R3, deg(R 3 ) =deg(R2 ) -I, 

Rq_ 2 = Tq_IRq_ 1 +Rq, deg(Rq) =pq, 

Rq_ 1 = TqRq. 

(4.5) 

We define al , ... ,{jp+ q as follows: For 1 <J<.p - q, {ji is the 
coefficient To of degree deg( To) - i = P - q - i, and for 
j= 1, ... ,q, ap_q+2j_1 is the leading coefficient of Rj, and 
{jp _ q + 2j is the coefficient of 1) of degree O. Then {jp ... ,{jp + q 
are invariant rational functions, and every invariant rational 
function is a rational function of {j I , ••• ,{j p + q' 

Proof" Since T, = ti and the leading coefficient of Ri is 
equal to that of ri , the invariance of ai is obvious from the 
argument above. By (4.4).l and g are expressed as polyno-
mials of to =XP-q+{jIXP-q-1 + ... +{jp_q, 
tj =X+{jP_q+2j' and {jP-q+2j-1 withj=I, ... ,q. Thus 
0'1 , •.. ,O'p + q are all expressed as polynomials of {jl , ... ,{jp + q' 
Therefore, by Theorem 4.1 every invariant rational function 
is a rational function of {jl , ... ,{jp + q' 

The functions 0'" {ji (1 <.i<.p + q) we have obtained are 
all rational functions but not all polynomials. Now, we de­
fine invariant polynomials Yi as follows: First, define Yi = {ji 
for i = 1, ... ,p - q. Next consider the following modified Eu­
clidean algorithm: 

F=T~G+R;, deg(R;)=deg(G)-I, 

r:, - q+ I G = T; R ; + R ;, deg(R;) = deg(R ; ) - 1, 
r:,-q+3R; = T;R; +Ri, deg(Ri) =deg(R;) -1, 

(4.6) 

r:,+q-3R~-2 = T~_IR~_I +R~, 
deg(R~) =deg(R~_I) -1, 

r:,+q_IR~_1 = T~R~, 
where YP _ q + 2j _ I is the leading coefficient of R; and 
Yp -q+2j is the coefficient of T; of degree 0 for j = l,oo.,q. 
Note that every Yi is a polynomial in the entries of M. 

Multiplying the second equation in (4.5) by r:, _ q + I 
and thej + lth equation in (4.5) by r:,- q+ 2j- I Yp _ q+ 2j- 3 

forj = 2,oo.,q, we have 

r:,-q+ I G = (Yp- q+ I TI )(YP- q+ IRI) + r:,-q+ IR 2' 

r:,- q+ 3Yp- q+ IRI 

= (Yp- q+ 3Yp- q+ I T2 )(YP_ q+ 3R2) 

+ r:,-q+3Yp- q+ IR 3, 

(4.7) 
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ri,+ q- 3 rp + q- SRq_ 2 

= (rp+q-3rp+q-sTq-d 

x (rp+ q- 3 R q_l) + r:,+ q-3 r p+ q - SRq, 

r;+q-I r p+ q -3R q_1 

= (rp+Q-Irp+q_3Tq)(rp+q_I.Rq)' 

Note R j = r p_ q+2j_ I Rj and compare (4.7) with (4.6). 
Then we find T ~ = To, T; = r p _ q + I T I , R; = R I , 

R~ =r:,-q+IR2' T;=rp-q+2j-Irp-q+2j-3~' and 
R j + I = r; - q + 2j - I r p _ q + 2j _ 3 Rj + I' for j = 2, ... ,q. 

Thus we obtain the following relation between lji and ri: 
ri = lji for i = 1, ... ,p - q + 1, 

r p- q+2 =ljp-q+2ljp-q+1> 

r p- Q+3 =ljp-Q+3lj;-q+I' (4.8) 

r p - Q + 2j = ljp - Q + 2jrp - Q + 2j - 3 r p - Q + 2j - I' 

r p - q + 2j + I = ljp - Q + 2j + I r p - Q + 2j - 3 r; - Q + 2j - I' 

forj = 2, .... q - 1 and 

r p+ Q =ljp+Qrp+ Q-3rp+ Q-I' 
Equation (4.8) shows that ri are expressed with lj k and vice 
versa. Finally. we have the following theorem. 

Theorem 4.3: The polynomials rl , ... ,rp + Q defined as 
above are invariant functions, and any invariant rational 
function is a rational function of rl , ... ,rp + Q' 

Example: Let M = (~ ~) be a (2.1) supermatrix, 
where 

A = (all a
12

), B=(b
l
), C=(CI ,C2), D=(d). 

a21 a22 b2 

Then the characteristic function h M (X) is, by definition, 
equal to 

det(XE -A) 

det(XE - D - C(XE - A) -IB) 

fA (X)2 
= , 

fA (X) (X - d) - k(X) 
where 

fA (X) = X 2 - (tr A)X + detA 

and 

k(X) = (X - a22 )cI bl 

+aI2 c,b2 +a2 ,c2 b\ + (X-al\)c2h2 • 
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We apply the modified Euclidean algorithm to F(X) 

= h (X)2 and G(X) = fA (X) (X - d) - k(X): 

F(X) = (X+rdG(X) +r2X2+tiJIX+tiJO' 

~G(X) = (r2X+r3)(r2X2+tiJIX+tiJO)' 

where 

rl = - str M, r2 =fA (d) + CI hI + c2 b2 , 

r3 = - dfA (d) - k(2d), 

tiJ I = -fA (d)tr A + k( - str M), 

tiJo = h (d)det A - k(O)str M. 

Thus we obtain the invariant polynomials rl' rz, r3' Then 
h M (X) is reduced to the irreducible expression: 

hM(X) = (X 2 + (7,X + (72 )/(X + (73), 

where (73 = r3/r2 = - d - k(d)/r2' (7, = r, + (73' and 
(72 = r2 + r, (73' 

Remark: It would be easily checked that rl' r2' and r3 
in the above example are expressed with str(M), str(M 2

), 

and str(M 3). This fact will be generalized to general super­
matrices. 
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The scattering theory for the Hamiltonian of the Stark effect is considered. A partial 
decomposition of the S-matrix is derived corresponding to separation of variables in the 
parabolic coordinates, and the analytic structure of the partial Jost functions and S-matrices 
are studied. 

I. INTRODUCTION 

The Stark effect for a hydrogen-like system in an exter-
nal constant electric field is described by the Hamiltonian: 

H=Ho + Vex), xER 3, 

Ho= -6.+(~,x), V(x)=z/jxj. (1.1) 

Recently, the scattering theory for this Hamiltonian 
was developed in Refs. 1-6. In the framework of the scatter­
ing theory the Stark "energy levels" get the natural meaning 
of the resonances corresponding to the poles of S-matrix in 
the complex energy plane. To justify this interpretation, one 
has to prove two facts: 

(i) the S-matrix for the Hamiltonian ( 1.1 ) is an analytic 
function of the energy E within a domain n including the 
real half-axis E < 0; 

(ii) in the limit ~ - 0 the poles of the S-matrix in n tend 
to the binding energies of the Hamiltonian h = - 6. + V. 

Previously4 both (i) and (ii) were proved for the Stark 
Hamiltonians with short-range potentials V. For the Cou­
lomb potential, the basic property oftheS-matrix (i) has not 
been established until now. But the limit ~ -0 is well stud­
ied (see Refs. 7-9 and references therein) via a different 
approach related to a nonselfadjoint spectral problem for the 
radial Schrodinger equation in parabolic coordinates. From 
the scattering theory point of view, one may interpret corre­
sponding results as the solution of (ii) under the assumption 
that (i) holds true. 

The main goal of the present work is to prove (i) in the 
case of the Coulomb potential. 

We attack the problem by making use of the well-known 
procedurelO of the separation of variables in the parabolic 
coordinates for the Schr6dinger equation associated with the 
Hamiltonian (1.1). The proposed scheme involves a lot of 
technical details but follows, in principle, standard ideology 
of the scattering theory for the Schrodinger equation with­
out external fieldsl\,12 that hereafter we shall call "the con­
ventional scattering theory." 

The paper is organized as follows. In the next section we 
describe preliminary results following our previous work.6 

a) Permanent address: Department of Mathematical and Computational 
Physics. Institute for Physics, Leningrad University, Leningrad SU-
199034, USSR. 

In Sec. III we derive a partial decomposition of the S-matrix, 
which corresponds to the mentioned separation of variables, 
and introduce Jost functions. In Sec. IV the analytic struc­
ture of the Jost functions and partial S-matrices is studied. 

II. PRELIMINARIES 

The basic objects of scattering theory for the Hamilto­
nian (1.1) are the wave operators 

u< ±) = S - lim eiH'e - iHo'. (2.1) 

The existence and completeness of these operators were 
proved l

-
3 for a large class of the potentials V that includes 

the Coulomb potential. 
The kernels of the wave operators (2.1) are eigenfunc­

tions of the absolutely continuous spectrum RI of the Hamil­
tonian ( 1.1). These kernels are of the simplest structure in a 
special representation4 that diagonalizes the operator Ho. 

To describe this representation, we introduce the fol­
lowing notations: 

E=j~j, X3=-(X,~), Xl=X+~X3' 
so that E is the electric field intensity, X3 is the component of 
x anti parallel to the field, and Xl ER2 is the projection of x 
onto the plane orthogonal to the field. 

Consider now the unitary transformation Y in L2 (R3 ): 

(Y/)(k) = J /(x) \flo (x,k) dx; k = {k1,k3}ER3, 

with the kernel expressed through the Airy function: 13 

\flo (x,k) = (EII3/21T)Ai(EI/3(x3 - k3» 

Xexp{i(k1 ,X1 )}. 

The function \flo is a wave function of the Hamiltonian Ho: 

Ho\flo(·,k) = E(k)\flo (',k), 

corresponding to the energy 

E(k) = k12 + Ek3' (2.2) 

The transformation !7 yields mentioned representation for 
the Hamiltonian (1.1): 

H-!7HY* =E(k) +YVY*, (2.3) 

in which the kernels of the wave operators (2.1) are given 
by6 

2731 J. Math. Phys. 31 (11), November 1990 0022-2488/90/112731-06$03.00 @) 1990 American Institute of Physics 2731 



                                                                                                                                    

U(±)(k,k') =6(k-k') _ t(k,k';E(k') ±iO) , 
E(k) - E(k') + iO 

(2.4 ) 

where t stands for the T-matrix of the Hamiltonian ( 1.1). 
The S operator related to the Stark effect is defined in a 

standard way, 

S=U(-)"U(+). (2.5) 

Making use ofEq. (2.4) leads one6 to the following formula 
for the kernel of S: 

S(k,k') = 6(k - k') - 21Ti6(E(k) - E(k '» 
Xt(k,k';E(k) + iO). (2.6) 

According to this representation, we can write S operator as 
a direct integral over the continuous spectrum of H: 

S=E-1f:oo <f3S(E) dE, 

where SeE) denotes the S-matrix at fixed energy E. This is 
an integral operator in L2 (R2) with a kernel expressed 
through the on-shell T-matrix: 

S(kl,kl ';E) = 6(kl - k/) 

- 21TiE- 1t(k,k ';E + iO) IE(k) = E(k') = E' 

(2.7) 

Equations (2.4 )-( 2.7) are similar to corresponding for­
mulas of the conventional scattering theory l2 and differ 
from them only by the form of the "dispersion rule" (2.2) 
[in the conventional scattering theory E(k) = k 2

]. How­
ever, this analogy is as yet formal until we give a physical 
interpretation of the S-matrix in our problem. To this end 
one has to establish which dynamical processes are described 
by the S-matrix (2.7). 

The problem was solved in our previous work6 by 
means of the investigation of asymptotics of the wave func­
tions of the Hamiltonian (1.1), which are defined as a trans­
formation of the wave operators associated with the repre­
sentation (2.3): 

"'(x,k) = f Y(x,q) U( + )(q,k) dq. 

For purposes of the present paper we need only one particu­
lar result of Ref. 6. Namely, let us consider the trajectories of 
the classical motion in constant electric field. These are pa­
rabolas parametrized by two-dimensional vector q 1 : . 
{3(ql) = [x: Xl =ql t,x3 

= -Et 2/4+ (E-q/)/E;tE( - 00,00)]. (2.8) 

As X-+ 00 along a parabola {3(ql ), the following representa­
tion holds true in the sense of distributions on the Hilbert 
space L2 (R2) with respect to the argument k l : 

"'(x,k)lx_oo - - (id21T) [6(k1 +ql)W_ (x,lkll) 
xE/3(ql) 

-S(ql,kl;E)W+ (X,lqll)], (2.9) 

where W ± are given by linear combinations of the Airy 
functions: 

W ± (X,A) = - 1TE- 116 exp( ± iA Ixll) 
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x [(E /E - X3)2 _ X12] - 114 

XG ± (- E-
1I3

[ (E - A 2)/E - x3 ]), 

(2.10) 

G ± (t) = HBi(t) ± i Ai(t)]. (2.11 ) 

The functions W ± are analogs of the incoming and out­
going spherical waves arising in conventional scattering the­
ory; the first term in (2.9) describes an incoming wave pro­
ceeding along the parabola {3 (k 1 ) whereas the second term is 
an outgoing wave moving along the parabola {3(ql ). There­
fore, the S-matrix (2.7) determines the transition of scat­
tered particle from the in-trajectory {3(kl ) to the out-trajec­
tory {3(ql)' 

The representation (2.9) means that for any smooth 
function cp(kl )EL2 (R2

), 

lII(x;E) = f "'(x,k)cp(kl )dkl I {3(Ql)3x-oo 

-cp( -ql)W_ (X,lqll) 

- (S(E)CP)(ql) W + (X,lqll). (2.12) 

This equation describes asymptotic behavior of wave pack­
ets composed of the wave functions of the Hamiltonian ( 1.1 ) 
with the same energy. 

III. PARTIAL DECOMPOSITION OF THE 5-MATRIX AND 
JOST FUNCTIONS 

In this section we get a partial representation of the S­
matrix (2.7) analogous to the standard decomposition of S­
matrix on the spherical harmonics in the conventional scat­
tering theory. 12 It enables us to introduce in a consistent way 
the phase shifts and the Jost functions related to the Stark 
effect. 

Our starting point is the well-known 10 procedure of the 
separation of variables in the Schrodinger equation for the 
Hamiltonian (1.1): 

( - a- EX3 + z/Ixl - E)'" = 0. 

Upon writing this equation in parabolic coordinates 

s= Ixl +X3 E[0,00), 1]= Ixl-X3 E[0,00), 

tP = atan(x2 /x1 )E[0,21T] (Xl = {XI>X2 }), (3.1) 

we can construct solutions of the form 

'" mn (x,E) = 1] - 1I2Hmn (1],E) Ymn (s,E)e im¢>; 

m = 0, ± 1, ... ; n = 0,1, ... , (3.2) 

where Ymn are eigenfunctions of an operator Am (E) given 
by the self-adjoint extension in L2 (R + ,s ds) of the differen­
tial operator: 

Eigenvalues Amn (so-called constants of separation) deter­
mine the equation for H mn : 

[
2m2 - 1 E E 

-a"'+~-4-81] 

z+Amn(E) ] + 1] Hmn (1],E) = 0, (3.4 ) 
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with the regular boundary condition at 5 = 0: 

lim 71- (Iml + 1)/2Hmn (71,E) = 1. (3.5) 
1j_O 

The functions H mn have a meaning of radial wave func­
tions of scattering states of the Hamiltonian (1.1). It is easy 
to check that, as 71 -- 00, they have the asymptotics 

(3.6) 

Il.m = (17"/4)(2m + 1), 
where the constants 8mn represent the contribution of the 
Coulomb potential (if z = 0, then 8mn = ° according to the 
results of Ref. 14). 

Following the analogy with the conventional scattering 
theory, one may interpret the constants 8mn as the phase 
shifts in our problem. 15 But then one faces the question: 
How are these phase shifts connected with the S-matrix 
(2.7)7 

To get correspondence between these objects, let us con­
sider the asymptotics of the function (3.2) as x -+ 00 along a 
parabola (2.8). In this case we have 

s=2q/IE+0(1), 71= - 2X3 +2q/IE+0(1). 

Substituting these equations into (3.2) and (3.6) en­
ables us to write the asymptotics of '11 mn in terms of the in-
coming and outgoing waves (2.10): 

'11 mn (x,E) -const '?Y mn (ql,E){ W _ (X,lqll) 

- ( - 1)m exp{2i8mn (E)} W + (X,lqll)}, 
(3.7) 

where 

'?1/ mn (ql) = Ymn (2qI 2IE,E )exp(im,pI)' 

and,p1 is the polar angle (3.1) for qi' 

On the other hand, the function '11 mn can be represented 
in the form (2.12) being a wave packet with appropriate 
density rp(ql)' Comparing general result (2.12) with (3.7) 
follows that in the case rp(ql) = '?Y nm ( - ql) and the func­
tions '?Y mn are eigenfunctions of the S-matrix, 

S(E)'?Y mn = Smn (E)'?Y mn' 

where 

Smn (E) = exp{2i8mn (E)}. 

Upon setting the normalization condition 

r dql '?Y mn (qi ,E) ?Y m'n' (ql,E) = 8mm,8nn" JR Z 

(3.8) 

we can write the spectral representation for the S-matrix, 

00 00 

L L Smn (E)'?Y mn (ql,E)'?Y nm (kl,E), (3.9) 
m=-oon=Q 

which is the partial decomposition we are looking for. It 
provides the connection between the S-matrix (2.7), the 
phase shifts from (3.6), and the eigenfunctions of the spec­
tral problem (3.3) for the constants of separation. 
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To study analytical structure of the partial S-matrix 
(3.8), we define it now in terms of Jost functions related to 
Eq. (3.6). At first let us introduce solutions of (3.6) Imn ( ± ) 

satisfying the asymptotic boundary conditions 

lim Imn (± ) (71,E) [G ±. (- EI/3(E IE + 71/2»] -I = 1, 
1j- 00 

(3.10) 

where G ± are the Airy functions (2.11) satisfying Eq. (3.4) 
upon neglecting the terms - 71 - 2 and - 71 - I. The existence 
of such solutions is proved in the next section. Obviously, the 
regular solution Hmn is a linear combination of Imn ( ±) 

which we write in the form 

Hmn (71,E) = e- il>.mFmn (- ) (E)lmn (- ) (71,E) 

+eil>.mFmn(+)(E)lmn(+)(71,E), (3.11) 

where Il.m is the phase from (3.6). 
The coefficients F mn ( ± ) we call the Jost functions in our 

problem. Comparing the asymptotics of (3.12) with (3.6) 
yields the representation for partial S-matrix (3.8) through 
the Jost functions 

Smn (E) = Fmn (+ ) (E)IFmn (- )(E). 

IV. ANALYTIC CONTINUATION OF THE 5-MATRIX 

The main result of this section reads as follows. 
Theorem 1: The Jost functions F mn ( ± ) and the partial S­

matrix Smn (E) are analytic in the complex E plane within 
the wedge • 

n = {E:larg( - E) 1< 217"/3}. (4.1) 

This theorem provides a rigorous interpretation of the 
Stark effect. Namely, the resonance states of a hydrogen-like 
system in the electric field may be defined now as poles of 
Smn (E) in n corresponding to the zeros of the Jost function 
F mn ( - ) (E). Their real parts give the Stark splitting whereas 
the imaginary parts determine widths of the resonances. 

The behavior of these resonances in the limit E to is de­
scribed by the following theorem. 

Theorem 2: Let Enm (n2
) be the zeros of F mn ( -) in n; 

n2 = 0,1, .... Then 

Re[ -E (nz)] 112 = _~_3N2Il.E+O(C) (4.2a) 
nm E!O 2N ~ , 

1m [ - Enm (n z)] 1/2 

where 

z [ IZl3 ]2nz + lml +1 

4N(n2 + Iml )!n2 ! 2N 3E 

xexp { _.£L E- 1_ 31l.}O + 0(1 », 
12N 3 

N = n + n2 + I m I + 1, Il. = n - n2 • 

(4.2b) 

In the case z < 0, the leading term of (4.2) gives the 
binding energy of the Coulomb system with the principal 
quantum number N; if z > 0, it reproduces the poles of the 
Coulomb S-matrix on the unphysical sheet of energy. 

The formulas (4.2) are well known and were obtained 
long ago.9 However, previously the constants Enm (n2) have 
been interpreted as generalized eigenvalues of a nonselfad-
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joint spectral problem associated with Eq. (3.3) at complex 
E. Theorem 1 provides a correct basis for the calculations 
performed in Ref. 9. These can be repeated now in the frame­
work of our scheme to get the same result but from a new 
point of view. Namely, due to (3.11) the zeros of Fm (-) 

satisfy the equation 

W(Hmn (7},E),J~-:' ) (7},E» = O. (4.3) 

We show below that Hmn andlmn (+) are analytic functions 
of E in 0, so that the Wronskian (4.3) is well defined. To 
evaluate these functions at E ..... O one can follow the method 
of Ref. 9, which, being applied to Eq. (4.3), provides the 
formulas (4.2). We restrict ourselves with this remark and 
refer to Ref. 9 for more technical details. 

The rest of this section is devoted to the proof of 
Theorem 1. From now on we set E = 1. It can be done with­
out loss of generality, since the cases E = 1 and E=/= 1 are 
related by a scaling transformation of variables. 

We start from the following fact. 
Theorem 3: The constants of separation Amn (E) are 

analytic functions in the wedge (4.1). 
Using new variable x = g, one can write Eq. (3.3) as 

{ax 2 + 1 - 4m
2 

_ Ex2 _ X4 + 4Amn (E) }gmn (x,E) = 0, 
4x2 2 

(4.4 ) 

where gmn (x,E) =.jX Ymn ($)' This equation coincides 
with the radial SchrOdinger equation for the two-dimension­
al anharmonic oscillator.16 It allows us to apply directly the 
technique developed for the one-dimensional anharmonic 
oscillatorl7 providing the stated result. 

Now let us introduce the equation 

( -a 2 + m
2 

- 1 _ !!.... _ E _ .l7})hm = 0, (4.5) '1 47} 1] 4 8 

which coincides with (3.4) ata=z+Amn(E). We denote 
by hm (7},a,E) and/m ( ± ) (1],a,E) the solutions of (4.5) cor­
responding to the boundary conditions (3.5) and (3.10), 
respectively. Obviously 

Hmn (7},E) = hm(1],z + Amn (E),E), 

I;"n (± ) (7},E) = 1m (± )(7},z + Amn (E),E). (4.6) 

Theorem 4: The solutions hm (7},a,E) and 
1m ( ± ) (7},a,E) are analytic functions of a and E. 

This theorem, Eq. (4.6), and Theorem 3 provide that 
solutions H mn (7},E) and Imn ( ± ) (7},E) are analytic func­
tions of E within the sector (4.1 ). Then, in accordance with 
(3.11), the Jost functions Fmn'( ± )(E) are as well analytic 
which proves Theorem 1. 

From the described results it is clearly seen that pecu­
liarities ofthe S-matrix in the complex E-plane are generated 
by the points of nonanalyticity of the constants of separation 
Amn (E) outside the wedge (4.1). These can be investigated 
on the basisofEq. (4.4) by virtue of the technique developed 
for the anharmonic oscillator. 17 It can be straightforwardly 
generalized to take into account the centrifugal term in (4.4) 
which, of course, causes nothing especial new. As a result, 
the structure of the points of non analyticity of Amn (E) is the 
same as that for the eigenvalues of the anharmonic oscilla­
tor. 17 
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Thus it remains to prove Theorem 4. We begin with the 
more simple case of the regular solution h m • Equation (4.5) 
for hm can be converted into an integral equation 

hm (7},a,E) = h !::) + 1'1 Km (7},Y) V(a,E,y) 

xhm (y,a,E)dy, (4.7) 

whet:e 

a E y 
V= --+-+-, 

y 4 8 
(4.8) 

and Km is the Green's function for the operator 
[a'1 2 + (1 - m2 )/47}] corresponding to the boundary con­
dition (3.5): 

K m(1],y) 

= {m- I,fiiY[(7}/y)mI2- (yI7})m12], 

,fiiY log(yI7}), 

m=/=O, 

m=O. 

As (4.7) is a Volterra equation, it can be solved by iteration: 

h = ~ h (k) 
m ~ m , (4.9) 

k=O 

where h !::) is defined in (4.8) and 

h
m 

(k)(7},a,E) 

= 1'1 Km (7},y) V(a,E,y)h m (k-I)(y,a,E)dy. (4.10) 

Let m =/=0. Inserting into (4.10) the bound 

IKm (1],Y) I.;;; (2/Iml)( 1]ly) ImI/2,fiiY, 1]>y, 

we get 

Ih (k)( E)lo;;: (Iml+I)12 [(2/lmj)Q(1],a,E)]k 
m 7},a, ",,1] k!' 

( 4.11) 
where 

Q( 7},a,E) = 171 I V(a,E,y) I y dy 

.;;; lal1] + I~ I 1]2 + 2
1
4 7}3. 

The bound (4.11) guarantees uniform convergence of the 
series (4.9) for a and E in any finite region. Thus hm is 
analytic for all a and E provided the individual terms hm (k) 

are. The latter is obvious as due to the definition (4.10), 
hm (k) are polynomials with respect to a and E. The case 
m = 0 can be treated in a similar manner. 

Consider now the functions 1m (±). We give the proof 
only for the functionlm ( + ). For 1m ( - ) it can be done quite 
analogously. 

First, we prove that the function 1m (+ ) (1],a,E) can be 
continued as an analytic function for all aEC and E: 
1m E>O. To this end we write Eq. (4.5) in the form of a 
Volterra equation: 

1m ( + ) ( 7},a,E) 

= g(O) (7},E) + 100 

L(E,7},Y) V(y,a)lm (+ ) (y,a,E)dy, 

( 4.12) 
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where 

g(O) (17,E) = G + ( - E - ~). m2 -1 a 
V(y,a) =----, 

4y2 y 
(4.13) 

and L is the Green's function of the operator 
(a TJ 2 + E /4 + 17/8) corresponding to the boundary condi­
tion (3.10): 

L(E,17,y) = -41Ti[G+ ( -E- ~)G_( -E- ~) 

Consider the iterative solution of ( 4.12): 

'" 1m (+) = L g(k), (4.14) 
k=O 

g(k)(17,a,E) = L'" L(E,17,Y) V(y,a)g(k- \)(y,a,E)dy. 

(4.15 ) 

For complex E and real 17, y the inhomogeneous term and the 
integral kernel of ( 4.12) satisfy the bounds 

IG± (-E-!L)I" const exp{+(!L)1I2ImE}, 
2 (1 + 17)114 2 

IL(E,17,y) I 

which follow from the asymptoiics of the Airy functions. 13 

Inserting (4.16) into (4.15) leads us to the bound 

Ig(k) (17,a,E) I 
exp{ - (17/2)112IIm E I} C k 
,,~~--~~~----~ 

(1 + 17) 114 

1'" dYI V(YI,a) k - 2 i'" d V(Yi + I>a) 
X 112 n Yi+1 112 

TJ (1+YI) i=1 Yi (1+Yi+l) 

X ( dYk V(Yk'~; exp{tk )1I2(IImEI-ImE)} 
JYk _ I (1 + yd 2 

( 4.17) 

with a constant C. 
When 1m E> 0 the exponential factor in the last integral 

vanishes and we get 

I 
(k)( E)I exp{-(17/2) 1I2 ImE} 

g 17,a, " 114 
(1 + 17) 

x Ck 
[('" I V(y,a) I dy]k, ImE>O. 

k! JTJ (1+y)1I2 
(4.18 ) 

This bound guarantees uniform convergence of the iterative 
series (4.18) for 17 in any region 17>a > O. Therefore, the 
function 1m ( +) is analytic for any aEC, 1m E> 0 and 17 
bounded away from zero, as are the individual terms of 
( 4.14 ). At the point 17 = 0 the integral in (4.18) diverges at 
its lower limit. To include the point 17 = 0, one should add 
the centrifugal term of V to the unperturbed Hamiltonian 

2735 J. Math. Phys., Vol. 31, No. 11, November 1990 

which allows us to improve the bounds (4.16) by factors 
taking into account the behavior of corrected inhomogen­
eous term and Green's function near the origin. It can be 
done exactly as in the conventional scattering theory. II 

Thus it remains to be shown thatlm ( + ) is analytic in the 
lower half-plane of E. In this case the scheme above breaks 
down due to the increasing exponent in the integrand of 
( 4.17). We shall treat the case 1m E < 0 by means of a dilata­
tion technique based on the fact that 1m ( +) is an analytic 
function of 17. 

First we prove that for complex 17 the analytic continu­
ation of 1m (+) has the asymptotics ofthe same form (3.10) 
as for real 17. Let 1m E> 0 and 17 = reiO. Generally speaking 
we have 

r- 00 

+ b(e)G _ ( - E - 17/2), 

with a(O) = 1, b(O) = O. To show that aCe) = 1, bee) =0 
we make use of the Montel theorem II which, in our case, 
says that a«(J) = 1 provided that 

1m (+ ) (17,a,E) 
lim = const a«(J), 17 = eiOr. 
r-", G+ (-E-17/2) 

(4.19) 

To check the latter let us consider the Wronskian 

G_( -E- ~)arlm(+)(17,a,E) 

-lm(+)(17,a,E)ar G_(-E-!L) _ ie
iO 

aCe). 
2 r-ao 21T 

This asymptotic equation has a solution of the form 

1m (+ ) (17,a,E) 

r-", 

X {d5' [G _ (- E - 5'eiO )] -2(1 + 0(1». 

The asymptotics of the integral in this formula can be evalu­
ated by making use of the substitution 5' = xr and corre­
sponding asymptotics of G _ involved in the integrand. As a 
result one gets (4.19). 

Next we prove that 1m ( + ) (reio,a,E) is an analytic func­
tion on the whole E-plane for (Je(O, 21T/3). Consider Eq. 
(4.5) along a fixed ray arg 17 = e. It can be converted into 
the integral equation 

1m ( + ) (reio,a,E) = g(O) (reio,E) + 1'" dy L(E,reiO,yeiO ) 

Xe2iOV(yeiO,a)lm (+ ) (yeiO,a,E), (4.20) 

with the same notations as in (4.12). Using the bounds 

" A 4 exp{ + ~ (..!.-)3/2 sin 1. e 
(1+r)1I 3 2 2 

=+= ( ; ) 112 IE I sin( ~ + arg E)} , (4.21 ) 
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we find that for sin 3(} /2 > 0 the terms of the iterative series 
for (4.20) are bounded as follows: 

Ig(k) (reio,a,E) 1< (1 ~ r) Q~~) 

x exp{ _ ~ (; y/2sin 3: 
_(;)1/2IElsin(~ +argE)}, 

where 

Q(r) = roo W(eiOy,a) 1 dy. 
J, (1 + y)1/2 

Thus the iterative solution converges uniformly within any 
wedge 0E[8,21T/3 - 8] (8) 0) to an analyticfunction satis­
fying the bound 

lfm (+ ) (reio,a,E) 1 < (1 + r) - 1/4exp{CQ(r)} 

xexp{ - ~ (; y/2 sin 3: 
_ (; )1/2IElsin(~ + argE)} . 

(4.22) 

Now we can continuefm ( + ) (1],a,E) with real 1] into the 
whole E-plane as follows: First consider Eq. (4.9); due to the 
bounds (4.16), (4.21), (4.22) the integral in (4.9) can have 
its contour bent onto a ray 

Yo = {s = 1] + teiO,tE[O, oo)} 

with any OE(O, 21T/3); so that 

1m (+ ) (1],a,E) = G + ( - E -1]/2) 

+ r L(E,1],S) V(s,a)lm (+ ) (s,a,E)ds· 
Jro 

(4.23 ) 

Due to (4.16), (4.21), and (4.22) the last integral converges 
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uniformly at the upper limit and defines an analytic function 
of E in the whole E-plane. So, we have two functions, defined 
by Eqs. (4.12) and (4.23), which obviously coincide in the 
region of overlap 1m E> O. Therefore, (4.23) provides con­
tinuation of 1m ( + ) (1],a,E) with real 1] into the lower half­
plane of E. 
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The initial value problem for the (2 + 1) -dimensional integrable generalization of the (1 + 1)­
dim~nsional continuous Heisenberg ferromagnet model (lshimori-I,II equations) is solved by 
the a and nonlocal Riemann-Hilbert problems (NRHP) method. 

I. INTRODUCTION 

A number of nonlinear partial differential equations and 
systems are integrable by the inverse spectral transform 
method (see e.g., Refs. 1-5). Some of the integrable equa­
tions are of great interest for physical applications. 

The continuous Heisenberg ferromagnet model de­
scribed by the equation St (x,t) = SXSxx is one ofthe most 
important nonlinear model in 1 + 1 (one spatial and one 
temporal) dimensions of this type6

•
7 (see also Ref. 8). 

The (2 + 1)-dimensional (two spatial and one tempo­
ral dimensions) integrable generalization of this model has 
been found by Ishimori in Ref. 9. It is described by the sys­
tem 

St(X,y,t) + SX(Sxx + a 2Syy ) + t/lxSy + t/lySX = 0, 

t/lxx - a2t/lyy + 2a2S(Sx XSy) = 0, (1.1) 

where S(x,y,t)S(x,y,t) = 1, t/l(x,y,t) is a scalar function, 

2 as as as 
a = ±1, St=-, S =-, S =-

at x ax y ay 

The Ishimori equation (1.1) has the commutativity opera­
tor representation 

[L I ,L2 ] = 0, (1.2) 

where the operators LI and L2 are of the form9 

LI = aay + pax, (1.3) 

L2 = at - 2iPa; - (iPx + iaPyP+ a3Pt/lx - t/ly)ax, 
(1.4) 

where P = S(x,y,t)O' and 0' = (0"1,0"2,0"3) are the Pauli ma­
trices and 

a a a 
at =-, ax =-, a =-

at ax y ay 

The model ( 1.1) is the first and very interesting integra­
ble classical model that describes the nonlinear spin system 
on the plane (x,y). A very important feature of this model is 
the existence of the topological charge 

N = -1-fdXdYS(SxXSy), 
41T 

a) Permanent address: Institute of Nuclear Physics, Novosibirsk-90, 
630090, USSR. 

which characterizes the solutions ofEq. (1.1).9 In Ref. 9 the 
Hirota bilinearization method has been applied to Eq. (1.1). 
This has allowed us to construct explicitly the vortex type 
nonsingular solutions of the Ishimori equation (1.1) with 
a = l and with arbitrary topological charge N. The model 
( 1. 1) describes, in particular, the time dynamics of the sys­
tem of vortices on the plane (x,y) (Ref. 9). Within the 
framework of the direct linearizing transform method the 
Ishimori equation ( 1.1 ) has been derived and treated in Ref. 
10. 

In the present paper, we study the Ishimori equation 
( 1.1) by the inverse spectral transform method. The solu­
tion ofthe initial value problem for the model (1.1) is given 
within the class of solutions S (x,y,t), which tend fast enough 
to S'" = (0,0, - 1) at X2 + y2 -+ 00. Both the Ishimori-I 
(Ish-I) equation [Eq. (1.1) with a = i] and the Ishimori-II 
(Ish-II) equation [Eq. (1.1) with a = 1] are considered. 
For the Ish-I equation the inverse problem equations are 
connected with the a equation while for the Ish-II equation 
the inverse problem equations are generated by the nonlocal 
Riemann-Hilbert problem (NRHP). 

The technique we use has already been applied for the 
integration of the several (2 + 1 )-dimensional nonlinear 
equations, for instance, the Kadomtsev-Petviashvili equa­
tion, 11-13 the Davey-Stewartson equation, 14-17 the Nizhnik­
Veselov-Novikov equation,18.19 and some other equations 
(see e.g., Refs. 20 and 21). The Ishimori equation is one 
more nonlinear equation solvable by the a problem and non­
local Riemann-Hilbert problem method. 

Note that the function t/l(x,y,t) in the system (1.1) is 
defined nonuniquely but up to the boundary term of the form 
lPl (y + O"x,t) + lP2(y - O"X,t) , where lPl and lP2 are arbitrary 
functions decreasing at the infinities. Different choices of the 
functions lPl and lP2 give rise to different operators L2 and to 
different time evolutions of the initial data S(x,y,O) for Eq. 
( 1.1). 

In the present paper we will consider when all these 
boundary terms vanish (lPl = lP2 = 0). Note also that the 
Ish-I equation has been discussed briefly in Ref. 22. 

II. THE ISHIMORI-I EQUATION 

First, we will discuss the initial value problem for the 
Ish-I equation 0.1) (a = 0. We will assume that S(x,y,t) 

2737 J. Math. Phys. 31 (11). November 1990 0022-2488/90/112737-10$03.00 @) 1990 American Institute of Physics 2737 



                                                                                                                                    

--+ (0,0, - 1) at x2 + yZ --+ 00 fast enough. 
In the case a = i, the linear problem LI1/J = 0, where the 

operator LI given by (1.3), can be rewritten in the form 

(a- 0) 1 
Z a 1/J+-(p+0"3)(az-az)1/J=0, o z 2 

(2.1) 

where 

z = ~(y + ix), z = ~(y - ix). 

The main steps of our construction are typical for the a 
and nonlocal Riemann-Hilbert problems method (shortly 
a-NRHP method).I1-Z1 At first, we should introduce the 
spectral parameter A into the problem. This can be done in 
different ways. We introduce the spectral parameter A into 
the problem by the transition in Eq. (2.1) from the function 
1/J to the function X (z,z,A ): 

(2.2) 

(2.3) 

where Q=P + 0"3' 
The spectral problem (2.3) is our starting problem. We 

should first solve the inverse problem for Eq. (2.3). Follow­
ing to the standard a-NRHP method, we will consider the 
solution of Eq. (2.3) bounded for all A (possibly with the 
finite number of singular points) and normalized by the con­
dition X --+ A- 00 1. Such solutions of Eq. (2.3) obey also the 
integral equation 

X(z,z,A) 

= 1 - HG( ',',A)Q(a' - a' + i/A)X( "',A»(z,z), 
(2.4 ) 

where G(z,z,z',z') is the bounded Green's function of the 
operator 

(a- 0) 
Lo = d a

z 
- (i/U)[0"3"] 

and a' = az , a' = a". 
Emphasize that just the introduction of the spectral pa­

rameter A via (2.2) with l/A, instead ofausual A, leads to 
the function X, which admits the canonical normalization 
(i.e., X--+,t + 00 1). 

The Green's function G(z,z,z' ,z') can be easily calculat­
ed if one notes that, similar to the Davey-Stewartson equa­
tion case, 17 the operator Lo is representable in the factorized 
form 

Lo = E ,t-If»E,t, 

where 

f»=(az 0) o az 

and the operator E,t acts as follows: 

E - _ (¢11 (z,z), eU/,t)z+ UiJ.)Z¢12(Z,z) ) 
,t¢(z,z) - _ (i/A)Z- (i;:~)Z.l. (-) .I. ( -) , 

e 'f'ZI Z,Z, 'f'Z2 z,z 
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(2.5) 

(2.6) 

where ¢(z,z) is an arbitrary 2X2 matrix. 
The formula (2.5) immediately gives 

G'" -'-L - I - E - I ;;;,- - IE 
""0-,t:U ,t. 

Hence, the operator G acts as follows: 

'" (G¢) (z,z) 

= _1_ J dz' 1\ di' 
21Ti 

(

t/JII(Z"Z') , t/J12,(z';z') eU/AlIZ-rl+(i/A)(z-r) ) 

z'-z z-z 
x 

t/J21(z',Z') -(i/A)(z-El-Ii/A)(z-r) t/J22(z',Z') , 
Z'-z e , Z'-z 

(2.7) 

(2.8) 

where ¢(z,z') is an arbitrary 2X2 matrix. The kernel 
'" G(z - z', z - z') of the operator Gis the Green's function G 

we are interested in. 
lt is easy to see from (2.8) that the Green's function Gis 

nowhere analytic in A. As a result, the solution ofEq. (2.4) is 
nowhere analytic too. 

Following the a method, we must now construct a cor­
responding a equation for X. Differentiating Eq. (2.4) with 
respect to A and taking account the explicit form of the 
Green's function (2.8), we obtain 

aX (z,z;A,,A ) = (0, F~ (A,A )e(i/,t)z+ ~i/A)Z ) 
aA \Fz(A,A)e- (if,t)z- (i/,t)Z, 0 

- ~ (GQ(a'-a'+ ~) ax~/») (z,z), 

(2.9) 

where 

F (A,A) =~Jdzl\dze-(i/,t)Z-(ifA)Z 
1 41TA 2 

X ± Qlk(z,z)(a'-al-~)Xk2(Z,z,A,A), 
k=1 A 

F (AA) = -~JdZl\dZe(i/,t)Z+U/A)Z 
2 , 41TA 2 

X ± Q2k (z,z) (a I - a' - ~) X k 1 (z,z,A,A). 
k=1 A 

(2.10) 

The terms proportional to 8 (A) that could appear in the 
rhs of (2.9) are equal to zero due to the special matrix struc­
ture of Q and the vanishing at A = 0 of the integrals that 
contain the highly oscillating exponents similar to (2.10). 

Then we introduce another solution N(z,z,A,A) of Eq. 
(2.3) that also obeys the integral equation: 

N(z,z,A,A) 

= l:,t (z,z) - HGQ(a' - at + (i/A»N( ·,.,A,A»(z,z), 
(2.11 ) 

where 

(
0 eo+ (i/,t)z+ (ifA)Z) . 

l:,t (z,z) = e- (i/,t)z- (ifA)z (2.12) 

Comparing Eqs. (2.9) and (2.11) and assuming that the 
homogeneous equation (2.11) has no nontrivial solutions, 
one obtains 
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(2.13 ) 

Now it is necessary to establish the relation between func­
tionsNandx. Using the integral equations (2.4) and (2.11) 
and the identity 

G(z,z';A,x)Q(z',z')(a' - a' + iIA)rp(z' ,z')~A (z',z') 

= G(z,z';l,A)Q(z' ,z')(a' - a' + ilA) 

xrp(z',Z')~A (z,z). (2.14) 

We find 

N(z,z;A,A) = X(Z,z;l,A.)~A (z,z). (2.15) 

Substituting the expression (2.15) into (2.13), we finally 
arrive at the linear a equation: 

aX(z,Z;A.,x) _ ( -.1 l)F( 1 1 -) --<'>"":"""':'aA:--'--":'" - X z,z,,",n. A".,Z,Z, (2.16 ) 

where 

(2.17) 

and FI and F2 are given by (2.10). 
In order to complete Eq. (2.16) ORe should also add the 

information about the singular points of the function X. We 
will assume that the homogeneous equation (2.4) has a finite 
number of simple pointsAI, ... ,An • This implies that the solu­
tion of Eq. (2.4) have a form 

- rpj(z,z) -
X(z,Z;A.,A.) = L --+ i(Z,Z;A,A.), (2.18) 

j A-Aj 

where rpj are the solutions of the homogeneous equation 
(2.4 ) and i is a function bounded in A. A precise structure of 
the singular part S of the function X can be determined by the 
use of the following two properties of Eq. (2.4). First, each 
column of the 2 X 2 matrix rpj obeys the homogeneous equa­
tion (2.4) separately. Therefore, the columns 

( rpill) and (rpil2) 
rp ;].1 rp i22 

can be the solution of the homogeneous equation (2.4) in 
different points A j and f-Lk' Second, it follows from the identi­
ty (2.14) that ifthe matrix 

(
rpll 0) 
rp21 0 

is the solution of the homogeneous equation (2.4) at the 
point A j then the matrix 

( 0 rpll)exp(i! + iZ) 
o rp21 A A 

is the solution of the homogeneous equation (2.4) at the 
point Aj • As a consequence of these two facts the singular 
part S of the function X is in the form 

S _ ~ rp(k)a, + ~ rp(e)a, ( iZ iz ) 
a, - ~ --- ~ --_-exp ----=-- , 

k~IA-Ak e~IA-f-Le f-Le f-Le 
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h, "" 
S _ '" 'I'(e)a, 
22- ~ --­

e~ I A - f-Le 

(2.19) 

Linear a equation plays a fundamental role in the in­
verse spectral transform method. As for other (2 + I)-di­
mensional integrable equations ll-21 the a equation (2.16) 
generates the equation of the inverse problem for the spectral 
problem (2.3). Indeed, taking into account (2.18) and using 
the generalized Cauchy formula (see e.g., Refs. 20 and 21), 

(A)=_1 f r dA'l\dA' aX(A') (,1,'_,1,)-1 
X 21ri J aA' 

+_1_ r dA' X(A ') 
21ri 1~ A ' - A ' 

(2.20) 

where C is the entire complex plane, we obtain from (2.16) 
the following integral equation: 

X(z,z;A.,x) = 1 + S(z,z;A,x) 

+ _1_ f dA ' 1\ dA ' X(z,z;A ',A. ')F(A ',x ') 
21ri A' - A ' 

(2.21 ) 

where S is given by (2.19). 
The two-dimensional singular integral equation (2.21) 

is the basic equation of the inverse problem for the spectral 
problem (2.3). In order to extract the complete set of the 
inverse problem equations from (2.21) one should use also 
the relation 

lim (x-~) =rpj (- ~zf + Yli iz 0 ), 
A-A, A - Aj 0 ,1,7 + Y2j 

(2.22) 

where Yj are some constants. This relation can be proved 
similar to the KP-II and DS-II equation cases13,15,16 (see 
Appendix A). 

Taking into account (2.22) and proceeding in (2.21) to 
the limits ,1,-· ... Aj; A-+f-Lk' one gets the system of equations 

1: "" (iZ ) ~ rp(k)al Val -'I'(j)al -~+YIi +~., , 
Aj k#l Aj -A.k 

+ ~ rp(e)a2 (iZ iz ) 
~ ----:..:..:.-.- exp - - - -=--

I ~ I Aj - f-Le f-Le f-Le 

+ _1_ f dA ' 1\ dA ' X (z,z;l 1 ,A. , )F(A ',x ';Z,z) = 0 
21ri A' -Aj 

(a = 1,2;i = 1, ... ,n l ), 
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+ _1_ fdA' !\dl' x(z,z;l',A ')F(A''x ';z,z) = 0 
2rri A ' - J.tj 

(a = 1,2;; = 1, ... ,n2 ). 

(2.23) 

At last, directly from the problem (2.3) one has [0"3'XO] 
=QXo where Xo=X(z,z;A,l)I.<=o· This gives 
p = - X00"3XO- I or equivalently 

S(x,y,t) = - pr(aX00"3XO I). (2.24) 

Equations (2.21), (2.23), and (2.24) form the com­
plete set of equations that solve the inverse problem for the 
spectral problem (2.3). The set 

Y(A,l) = {FI(A,X),F2(A,X),Aj> 

rli(i = 1, ... ,n l ),J.tk,r2k (k = 1, ... ,n2)} 

is the inverse problem data for the problem (2.3). Given 
Y (A,X), one can calculate functions X,,pi with the use of the 
integral equations (2.21) and (2.23). Finally, we recon­
struct the spin variable S (x,y,t) by the formula (2.24) where 

Xo=I+SI.<=o 

_1_ f dA ' !\ dl' x(z,z;l',A ' )F(A ',1') 
+ 2m A'-O 

(2.25) 

NotethatEqs. (2.21) and (2.23) are solvable at least for 
the small data F( A,X ) . 

In the general case, the inverse problem equations give 
the complex-valued spin vector S(x,y,t). In order to have a 
physically sensible real-valued spin vector S(x,y,t), one 
must impose the additional constraint on the inverse prob­
lem data. 

For real-valued S(x,y,t) one has p = - O"zP0"2 and 
therefore Q = - 0"2Q0"2' Comparison of Eq. (2.3) and its 
complex conjugated in this case gives the constraint 

i(Z,Z;A'x) = 0"2X(z,z;1,A)0"2' (2.26) 

This condition leads to the following constraint for the in­
verse data for the real-valued spin variable S: 

FI(A'x)=F2(1,A), ,p(k)aP=O. (2.27) 

One can straightforwardly check that the inverse problem 
data constrained by the condition (2.27), in fact, generates 
the real-valued S(x,y,t). 

Now we are able to solve the initial value problem for the 
Ish-I equation. For this purpose one must establish the evo­
lution ofthe inverse problem data Y(A,X) in time t. Using 
the equation L2tP = 0, where the operator Lz is given by 
( 1.4) with a = i, one, in a standard manner, gets 

dFI (A,X,t) =.!.... (_1_ + .J-) F (A 1" t) 
dt 2 A Z A z I "', , 

dF2 (A,X,t) = _.!.... (_1_ + .J-) F (A 1 t) 
dt 2 A Z A Z 2 " , 

(2.28) 
dAk dJ.tk 
--=--=0, 

dt dt 

drJi i dr2k i 
dt"= - A~' dt"= J.ti . 
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Therefore, 

- - '(I 1) FI (A,A,t) = FI (A,A,O)exp - -2 +"=2 t, 
2 A A 

- - [i(1 1)] Fz(A,A,t) = F2 (A,A,0)exp -"2 V + 1Z t , 

(2.29) 

i i 
rll (t) = rHO + -3 t, r21 (t) = r2l0 - - t, 

A I J.tl 
where rHO and r2l0 are arbitrary constants. 

The use of the formula (2.29) allows us to solve the 
initial value problem for Eq. (1.1) by the inverse spectral 
transform method standard procedure. 

(Z.IO) (2.Z9) 

S(x,y,O) -+ Y(A,l,O) -+ Y(A,X,t) 

(2.21 ),(2.Z3),(2.24) 

S(x,y,t). (2.30) 

Emphasize that the procedure described gives the solution of 
the initial value problem for the spin variables S which tends 
to the asymptotic value (0,0, - 1) sufficiently fast as 
x 2 + y2-+ 00. Note also that the evolution law (2.29) pre­
serve in time the reality conditions (2.27). 

As usual (see e.g., Refs. 12-20), one can find the solu­
tion of the Ish-I equation (1.1) that corresponds to the case 
F(A,X,t) =0 in an explicit form. Indeed, in this case the sys­
tem (2.23) is the liftear algebraic system that can be easily 
solved with respect to ,p(i)aP' Substituting these ,p(i)aP into 
(2.21), we obtain the solutions of Eq. (1.1) given by the 
formula (2.24) where Xo = 1 + S 1.< =0' The simplest from 
those solution corresponds to the case n l = n2 = 1 and it is 
of the form 

S+ =SI + iSz = 2del(ad - be), 

S_=SI-iS2=2abl(ad-be), (2.31) 

S3 = (ad + be)/(be - ad), 

where 

1 [ 1 
e = X021 = -; A(,u- A) 

+ 1 ( iz it )] _ i'i/" _ iz/;; -; -V-V- rl e ~ ~, 

d=XOZ2= 1 +~[~(-~-~-rl) 
rr J.t A2 A 3 

and 

+ exp[lz(l/l- 1IJ.t) + k(lIA - lI,u)] ] , 
A(J.t - A) 
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11' = (~+ ~ + rl)( - iZ -.!!. + r2) A 2 A 3 p,2 p,3 

exp[iZ{1/A-l/p,) +iz{1/A-l/p,)] 
+ Ip, - A 12 

We emphasize that formulas (2.31) give the solution ofthe 
Ish-I equation (1.1) for generic complex S(x,y,t). For real S 
such solutions are absent, as follows from the constraints 
(2.27). So the solutions of the Ish-I equation (1.1) con­
structed here are of different type compared with those 
found by the Hirota method in Ref. 9. Note, in conclusion, 
that after completing this paper the more rigorous consider­
ation ofthe inverse problem for the Ish-I equation has been 
given in Refs. 23 and 21. 

III. THE ISHIMORI-II EQUATION 

At the case a = 1 the linear problem LltP = 0 is the hy­
perbolic linear system. In the characteristic variables 
t = ~(y + x), T] = ~(y - x) this problem is of the form 

(a'1 0) 1 o as tP+"2 Q(as -a'1)tP=o, (3.1 ) 

where Q(x,y,t) = P(x,y,t) + 0'3' 
The spectral parameter A is introduced into the problem 

similar to the Ish-I case, namely, by the transition to the 
function X: 

X(t,T].A) *tP(t,T]) (~,- i

s
/)., ei'1/~)' 

The function X obeys the equation 

(
a'1 0) i 
o as X--u [0'3'X] 

+ ~ Q(as -a'1 + ~)x=o. 

(3.2) 

(3.3 ) 

We will calculate the Green's function for the operator 

(a'1 0) i 
Lo= 0 as --u [0'3'] 

by the same method as that has been used in the previous 
section. Analogously to (2.5) the operator Lo is represent­
able in the factorized form 

Lo=E).-lgE)., 

where 

The choice 

gives the Green's function 
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(3.4) 

g = (a'1 0) 
o as 

and the operator E). acts by the rule 

E = (tfJll(t,T]) e- i'1/).-iSiXtfJ 12(t,T]») 
). tfJ eis /A+ i'1/}.tfJ21 (t IT]) tfJ22(t,'T/) , 

(3.5) 

where tfJ is an arbitrary 2 X 2 matrix. The operator Lo is not 
bounded as the function on A in contrast to the operator 
(2.5). However, this disadvantage is more than compensat­
ed by the much simpler structure of the operator 

(
a- 1 0) 

g-I: g-I = ~ as-I' 
"'-

As a result, the inverse operator G = L 0- 1 is given by 
the simple formula 

A 

G=E).-Ig-IE)., (3.6) 

i.e., 

(GtfJ)(t,T]) 
. (a;; l(tfJl1(t',7J'», a;; l(ei('1-'1')/).tfJl2(t',T]'» ) 

:::;:: a i l(e-i(s-s')/).tfJ21(t',T]'», a s-l(tfJ22(t',T]'» . 
(3.7) 

"'-
The kernel G(t - t " T] - T]' .A) of the operator G is the usual 
Green's function for the operator Lo. 

The main feature ofthe Green's function (3.7), in com­
parison with (2.8), consists of the absence of A dependence. 
Thus the Green's function (3.7) is an analytic function on 
the entire complex plane of A. 

Another feature of the Green's function (3.7) is that it is 
defined nonuniquely. The freedom in the definition of this 
Green's function is connected with the possibility to choose 
the different concrete realizations of the formal operators 
ail and a ;; I. This freedom can be used for the construction 
of the bounded Green's functions. Indeed, choosing 

a;; I/*f'1 dT]' l(t,T]') 
+00 

and 

a s-1* f: 00 dt' l(t',T]), 

we define the Green's function: 
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It is easy to see that the Green's function G + (A) is bounded 
at the upper half-plane 1m A > 0, while the Green's function 
G - (A) is bounded at the lower half-plane. 

Now let us introduce the solution X+ and X- of the 
problem (3.3) which simultaneously are the solutions of the 
integral equation 

X± (S,1j,A) 

= 1 - {G ± (',A)!Q(a' - a' + i/A)X± (',A)}(S,1j), 
(3.10) 

whereG + andG - are given by the formulas (3.8) and (3.9); 

Q=P+ (j3' a' = as" a' = aT}" 
As far as the Green's functions G + and G - , the solution 

X+ and X- are analytic and bounded functions in the upper 
and lower half-planes, respectively. Further, since 
G + - G - :;60 at 1m A = 0, then X+ - X- :;60 at 1m A = ° 
too thus, one can define the function 

and 

r(t.7].A) 

(3.9) 

x*{x+, ImA>O, 
X-, ImA<O, 

which is analytic and bounded on the entire complex plane 
and has a jump across the real axis. So, we arrive at the 
standard Riemann-Hilbert problem. We will also assume 
that the homogeneous equation (3.10) has no nontrivial so­
lutions. 

At this stage, according to the standard procedure I 1-20 

one must find out the relation between the functions X+ and 
X- on the real axis. This relation can be derived by the same 
method as for the Davey-Stewartson equation. IS

-
17 

First, we note that Eqs. (3.10) straightforwardly give 

(X+ - X-)(s,1j,A) 

= r(S,1j,A) - [G(',A)!Q(') 

(3.11) 

where 

(3.12) 

(
-r+~~ d7]' ~ [Q(t.7]')(a. - a,,. + ~) x+(t.7]') 1". -r+~~ d7]' ei(',- ~')IA ~ [Q(t.7]')(a. - a,,. + ~) x+ L ) 

= r+: dt'e-ic<-nlA ~ [Q(5'.7])(a,,-a,,+ ~)x-(t'·ll)L· r+~~ dt' ~ [Q(t'.7])(a,,-a,,+ ~)[(5',7])L ' 
(3.13) 

I 
Then we introduce the 2X2 matrix f(l,k) defined by the and 
relation 

f(1,k) - f-+",'" dk' T-(I,k')f(k',k) 

= T-(l,k) - T+(l,k), 

where 

(3.14) 

x ~ [Q(s,1j)(as - aT} + ~ )x- (s,1j,k) L, 
(3.15) 

T i"l = T i"i = T i"2 = 0, 
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T I1(l,k) = 2~ f f dSd1je-isll-iT}lk 

X ~ [Q(S,1j) (as -aT} + ~)x+(S,1j,k)L' 
Tit =T21 =T21 =0. (3.16) 

The integral equation (3.14), in fact, are easily solved and 
one gets 

f(l,k) 

(

0, 

= T 21 (I,k), 

Further, the obvious identity 
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(as - a." + ~) x- (t,1],k)l'./ (t,1])/(I,k)l'.;; I (t,1l> 

= [(as - a." + 7)x-(t,1],k) 1 
Xl'./(t,1])/(I,k)l'.;; I (t,1]) 

holds, where 

(
eiSIA. 0) 

l'.A.(t,1])* ° e-i."IA.· 

(3.18) 

(3.19) 

At last, using (3.18), one can straightforwardly show 
that the quantity 

L+",,"" dk X- (t,1],k)l'.k (t,1])/(k,).. )l'.;- I (t,1]) 

obeys the same equation (3.11) as (X+ - X- )(t,1]')"). In 
virtue of the absence of the nontrivial solutions for the homo­
geneous equation (3.11) this gives (see Appendix B) 

X+(t,1],)..) - X-(t,1]')") 

= L+",,"" dl X-(t,1],/) l'./(t,1])/(I,)..)l'.A.- I (t,1]), 

1m A. = 0. (3.20) 

Thus the jump X+ - X- at 1m A. = ° is expressed lin­
early and nonlocally via X-. So, we have the regular non­
local Riemann-Hilbert problem. 

With the use of the standard formulas that solve the 
standard Riemann-Hilbert problem (see, e.g., Refs. 11, 13, 
and 20) we obtain from (3.20) the following integral equa­
tion: 

1 f+""f+"" X-(t,1]')") --. dldk 
211'1 - '" - "" 

x X -(t,1],l)l'./(t,1])/(I,k)l'.k- 2 (t,1]) = 1. 

k-A.+iO 

Further, directly from (3.3) one has 

P(t,1]) =S(t,1])u= -gO'JK- I, 

where g(t,1]) = X (t,1],A. = 0). 
From Eq. (3.21) it follows that 

1 f+""f+"" g(t,1]) = 1 + _. dl dk 
211'1 - "" - '" 

X- (t,1],/) l'./ (t,1] )/(I,k)l'.;; I (t,1]) 
X . 

k 

(3.21 ) 

(3.22) 

(3.23) 

The integral equation (3.21) and formulas (3.22) and 
(3.23) are the complete set of the inverse problem equations 
for the spectral problem (3.3). The functions Tit (I,k) and 
T i1 (/,k) are the inverse problem data. 

To solve the initial value problem for the Ish-II equation 
one should, as usual, find the time evolution of the inverse 
problem data. The evolution laws of the functions T 11 and 
T it can be found in a standard manner from the second 
auxiliary linear problem L2 t/J = ° where the operator L2 is 
given by (1.4) with a = 1. One obtains 

T 11 (k,)..,t) = T 11 (k,)..,O)e(i12) (Ilk '+ IIA. ')t, 

T 21 (k')",t) = T 21 (k,A.,0)e-(i/2)(Ilk'+IIA')t. (3.24) 
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For the 2 X 2 matrix /(l,k) the time evolution looks like 

/(I,k,t) = e(iu,/l'lt/(I,k,O)e - (iu,lk'lt. (3.25) 

The inverse problem equations (3.21)-(3.23) and the 
evolution law (3.24) allow us to solve, in principle, the initial 
value problem for the Ish-II equation by the standard proce­
dure (2.30). 

The formulas (3.21 )-(3.23) give the possibility to con­
struct exact solutions of the Ish-II equation. In particular, 
one can construct exact solutions with the functional param­
eter that are typical for equations connected with the non­
local Riemann-Hilbert problem. 24 The solution of such type 
correspond to the factorized functions T ii and T 21 : 

N 

T 11 (I,k,1) = L /n+ (l)gn+ (k)e(i/2)(1I/'+ Ilk2)t, 
n=1 

N 
T 21 (l,k,t) = L /n-(l)gn-(k)e-(i/2)(III'+llk')t, 

n=1 

(3.26) 

where / ± (I), g ± (k) are arbitrary functions. 
For the inverse problem data of such type one has 

l'./ (t,1] )/(I,k) l'.k- 1 (t,1]) 

N (fn+ (l)eisl/+ it 21', ° ) 
= n~1 0, /n- (I)e- i."I/-itI2l' 

(0, _gn+(k)ei."lk+it12k' ) 

X\gn-(k)e-iSlk-it12k', Pn(k)e(i."lk+it12k' , 

(3.27) 
where 

Pn(k)* - m~1 g~ (k) f_+""oo dk'/~ (k')gn- (k'). 

(3.28) 

Using (3.27), it is not difficult to convert the integral 
equation (3.21) into the algebraic system 

N 

Xk - L XnAnk = hk, (3.29) 
n=1 

(3.30) 

(3.31) 

Solving the system (3.29) with hk and Ank given by 
(3.30) and (3.31) with respect to Xk, we find X (t,1]')" = 0): 
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g(s,1])=*X(s,1],,1 = 0) 

N 1 I dl 
= 1 + L Xn(S,1]) -2' -I 

n=1 1TI 

(0, - g; (l1)li~/I+ it Ill' ) 

X\gn- (I)e-iSII-iI/2/', pn l . _-r"/2/' /., • 

(3.32) 

Finally, the formula (3.22) gives us the exact solution of the 
Ish-II equation that contains 4N arbitrary functions 
In+ (,1), gn± (,1), n = 1, ... ,N of A, one variable. 

The simplest solution of this type is (n = 1): 

G
' 

ICS,1],t) = + 00 

dk g-Ck)e-iSlk-iIIZk', 
- 00 21Tik 

A _ (0, A\2 ) 
- \A21' A22 ' 

where 

A ( t) = -=-! II d,1 dl + (1)1"-(,1) 
12 1], 21Ti I _ A, g 'J 

[. (1 1 ) it ( 1 1 )] xexp 11] ,-;: +"2 T2-Tz ' 

1 II d,1 dl -A21 (s,t) =-. --g (1)1+(,1) 
2m I-A 

xexp[iS(~ -+)+ ~ (,1\ - 1\)]' 
A ( t)=-=-!IId,1dll-C,1) +(1) 

22 1], 21Ti 1 _ A, g 

X I-+ 0000 dk' 1+ (k ')g- Ck ') 

. exp [i1] ( + -~) + ~ (/2 - ,1\)] 

and I ± (,1), g ± (I) are arbitrary functions. 

IV. CONCLUSION 

The spectral parameter A, can be introduced into the 
problem (2.1) in a more usual way, namely, by the transition 
to the function 

i(z,z,A,) = ¢(z,z) (e -az..,_ 0) . 
0, e'''-Z 

(4.1 ) 

The function i obeys the equation 

(ao
• 0) U a

z 
i -"2 [u3,iJ 

+ !(p + u3 )(az - az + U)i = o. . (4.2) 

2744 J. Math. Phys., Vol. 31, No. 11, November 1990 

S(X,y,t) = - ~ tr(ugu~-I), 

where 
g(x,y,t) = 1 + h(1 - A)-1 

and 

(3.33 ) 

(3.34) 

Equation (4.2) is, of course, nothing but Eq. (2.3) with the 
change A, -+ 1/,1. But now the solutions ofEq. (4.2) cannot be 
canonically normalized. Indeed, it follows from ( 4.2) that at 
A, -+ 00 one has 

(4.3) 

where 

P(z,z,t) = - gu~-I. (4.4) 

The spectral problem (4.2) is, obviously, equivalent to the 
integral equation of the type (2.4) with the Green's function 
G which is given by (2.8) with the change A, -+ 1/,1. The cor­
responding a equation is of the form (2.16) with the substi­
tution A, -+ 1/,1 in the rhs of (2.17). 

The problem will appear when one tries to proceed from 
the linear a equation (2.16) to the linear integral equation, 
using the formula (2.20). The corresponding integral equa­
tion will be of the form (2.21) where one should substitute 
the unit by g(z,z,t). The appearance of the function g(z,z,t), 
which depends on the potential (P(z,z,t) , instead of the unit, 
produces the solvability problem. 

This obstacle can be easily removed by the transition in 
the corresponding a equation from the function i to a new 
functionJ.l (z,Z,,1) =*g-li(z,Z,,1). This function has a canoni­
cal normalization J.l-'",l- 00 1 and the corresponding integral 
equation for J.l is exactly Eq. (2.21). The inverse problem 
equations are of the form (2.21) and (2.23) whiletherecon­
struction formula (4.4) is where 

g(z,z,t) = (.u(z,z,t;A. = 0)-1. (4.5) 

In a similar manner one can consider the Ish-II equation 
also. 

So, the two ways of introduction of the spectral param­
eters [i.e., (2.2) and (4.1) J lead to the equivalent results. 
The first way (2.2) is more preferable from the point of view 
of the absence of the additional step of the transition to the 
intermediate function J.l. The second way (4.1) is more suit-
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able for the discussion of the gauge equivalence of the Ishi­
mori and Davey-Stewartson equations. 10,22,23 

This paper is the first one devoted to the Ishimori equa­
tion. In the second part we will discuss the exact solutions of 
the Ishimori equation that can be constructed by the use of 
the nonlocal a problem and the recursion and algebraic 
properties of the Ishimori equation. 
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APPENDIX A 

Here, we will derive relation (2.22), i.e., 

(

-iZ ) 7+ Yli 0 

I· ¢i ~ I 1m X---- ='{'. 
A-A; ( A - A; ) I 0 lz ' 

..1. 2 + Y2i 
I 

(Al) 

where Yi are some constants and ¢i are normalized by the 
condition 

To do this we first introduce the function i: 
i(z,z;A) * X(z,z;A,J) - ¢; (z,z)/(A - Ai)' (A2) 

In virtue ofEq. (2.4), the function i obeys the integral equa­
tion 

[1+ ~ G('"A,A)Q(a'-a'+ ~)]i(·"A,A) 
1 (1 -= 1- A -A 1 +2 GC "A.A.) 

I 

xQ(a'-a'+ ~)]¢i' (A3) 

where the operator G is given by (2.8). Proceeding to the 
lim A --+ A j in (A3), one obtains the equation 

[1+ ~ G(',.A.j,J;)Q(a'-a'+ ;,)]X(·"A;) 

= I-~(~G(."A) 
2 aA 

f-+ 0000 d/ X- (S.'Tj,l)~1 (s,'Tj)/(/,k)~k- I (s,'Tj) 

XQ(a'-a'+ ~)¢j)IA=A' 
1 -= 1 +-2 G(·"A;.A.i)Q¢i 

U i 

_ (aGe ',.A.) ) Q (a' _ a' +~) ¢i' (A4) 
aA ..1=..1; Aj 

where X (Z,Z,A; ) = limA_A, i(z,z.A.). 
Using the formula (2.8) and performing some transfor­

mations in (A 4), one gets the following equation: 

[1++G('"A;.Ji )Q(a'-Ci'+ ;J] 

+(.,~')-~, (0- ~7 0)) 
= 1 __ 1_(73 ff dZAdZ 

41TA 7 

X [Q(z.Z) (az -az +~)¢i(Z'Z)].. (AS) 
A, d.ag 

Now, taking into account the fact that the homogeneous 
integral equation (2.4) has the nontrivial solution ¢j, one 
conclUdes from (A5) via the Fredholm alternative's 
theorem that 

= _ (Yli 0) 
X(z,z,Ai ) = ¢i 0 Y2i ' (A6) 

where Yli and Y2j are some constants and 

1 - _1_2 (73 f f dz/\dZ [Q(z,z)(az - az +~) 
41TA i A; 

X¢j(Z,Z)] = o. 
diag 

(A7) 

The relation (A6) is nothing but (Al). 

APPENDIX B 

In this appendix we present some steps of calculations 
that gives rise to the relations (3. 14) and (3.20). 

First, on\! has the integral equation (3.11) for the jump 
X+ - X-· Let us assume that the jump X+ - X- is of the 
form (3.20) where /(/,..1.) is some function. Then let us sub­
stitute this expression (3.20) for X+ - X- into Eq. (3.11). 
One gets 

= (f_+ 0000 d'Tj'(Q(s,'Tj')g kX+ (k»l1eis /
k
; f-+ 0000 d'Tj'(Q(s,'Tj')g kX+ (k»12e - i71'/k ) ~k- I (s,'Tj) 

f
+OO f+oo 2 

_ 00 ds'(Q(s','Tj)g kx-(k)beiS'lk; _ 00 ds'(Q(s','Tj)g kX- (k)be- i71lk 

- ~ f+ 00 dl GQ(·)g kX- (/)~I (S,'Tj)f(/,k)~k I (S,'Tj). 
2 -00 

(BI) 
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Then, using the identity (3.18) and Eqs. (3.10) one can 
transform (B 1) into thefollowing form: 

f-+ 0000 dl x- (I) "2.d(l,k),"2.;: I 

= f_+oooo dIX-(l)"2.[(T+(I,k) - T-(l,k»"2. k-
1 

+ f_+oooo dl x-(l)"2.[ 

f
+ 00 

X -00 dk'T+(I,k')f(k',k)"2.k- '
, (B2) 

where T + (I,k) and T - (I,k) are given by (3.15) and (3.16). 
Equation (B2) obviously implies Eq. (3.14). 

So, the jump (X+ - X-)( .. O is really given by (3.20) 
where the function f( I,A) is defined by the integral equation 
(3.14). 
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